Although photocatalytic hydrogen production from water holds great potential as a renewable and sustainable energy alternative, the practical application of the technology demands cost-effective, simple photocatalytic systems with high efficiency in hydrogen evolution reaction (HER). Herein, the synthesis and characterization of CuS/ZnCdS heterostructured nanoplates (CuS/ZnCdS HNPs) as a high photocatalytic system are reported. The cost-effective, hierarchical structures are easily prepared using the CuS NPs as the seed by the epitaxial growth of the ZnCdS nanocrystals (NCs). The CuS/ZnCdS without the noble metal cocatalyst exhibits a high HER rate of 61.7 mmol g h, which is 8,014 and 17 times higher than that of CuS and ZnCdS, respectively, under visible light irradiation. The apparent quantum yield (AQY) of CuS/ZnCdS reaches 67.9% at 400 nm with the highest value so far in the reported ZnCdS-based photocatalysts. The excellent activity and stability of the CuS/ZnCdS are attributed to the formation of a strong internal electric field (IEF) and the Z-scheme pathway. The comprehensive experiments and theoretical calculations provide the direct evidences of the Z-scheme route. This work may offer a way for the design and development of efficient photocatalysts to achieve solar-to-chemical energy conversion at a practically useful level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202400611DOI Listing

Publication Analysis

Top Keywords

z-scheme route
8
photocatalytic hydrogen
8
hydrogen evolution
8
cus/zncds
6
direct observation
4
observation z-scheme
4
route cus/zncds
4
cus/zncds heteronanoplates
4
heteronanoplates highly
4
highly efficient
4

Similar Publications

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Peroxydisulfate (PDS) activation is a crucial process for wastewater treatment in complicated water matrices. However, it is frequently limited because of poor selectivity, sluggish kinetics, and short lifetime of radicals. Therefore, in this study, an efficient sulfur-doped CN/DyFeO (SCN/DyF) Z-scheme heterostructure catalyst was rationally developed using a simple wet-chemical strategy to photoactivate PDS, which can effectively degrade norfloxacin (NOR; 96.

View Article and Find Full Text PDF

Nitrogen vacancy mediated g-CN/BiVO Z-scheme heterostructure nanostructures for exceptional photocatalytic performance.

Environ Res

December 2024

School of Materials and Chemistry, Analytical and Testing Center, Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address:

In this work, a novel V-g-CN/BiVO (V-CN/BVO) Z-scheme heterojunction photocatalyst was formed by introducing nitrogen vacancies (V) and constructing heterojunction, which is able to efficiently degrade the representative contaminant rhodamine B (RhB) upon exposure to visible-light, resulting in an outstanding degradation rate of 98.91% of RhB within 30 min. This photocatalyst exhibits catalytic universality and allows the degradation of methylene blue (MB, 97.

View Article and Find Full Text PDF

Elucidating the synergistic effect of oxygen vacancies and Z-scheme heterojunction in NU-1000/BiOCl-Ov composites towards enhanced photocatalytic degradation of tetracycline hydrochloride.

J Colloid Interface Sci

December 2024

School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China. Electronic address:

Although Z-scheme heterojunction composites have been widely studied in photocatalysis, in-depth investigation of oxygen vacancies (Ov) in the Z-scheme photocatalysts is still rare. Herein, an oxygen vacancies modified NU-1000/BiOCl-Ov composite with Z-scheme heterojunction was rationally designed and fabricated. The combination of X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) experiment verified the presence of oxygen vacancies, meanwhile the Z-scheme charge transfer across the heterojunction interface was confirmed in detail by the in situ-XPS, Kelvin probe force microscope (KPFM) studies, ultraviolet photoelectron spectroscopy (UPS), EPR radical capture experiment, as well as density functional theory (DFT) calculation.

View Article and Find Full Text PDF

Crafting semiconducting heterojunctions represents an effective route to enhance photocatalysis by improving interfacial charge separation and transport. However, lattice mismatch (δ) between different semiconductors can significantly hinder charge dynamics. Here, meticulous lattice tailoring is reported to create a covalent heterointerface with a built-in electric field (BIEF), imparting markedly improved hydrogen peroxide (HO) photosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!