A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methane-HS Reforming Catalyzed by Carbon and Metal Sulfide Stabilized Sulfur Dimers. | LitMetric

Methane-HS Reforming Catalyzed by Carbon and Metal Sulfide Stabilized Sulfur Dimers.

J Am Chem Soc

Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.

Published: March 2024

HS reforming of methane (HRM) provides a potential strategy to directly utilize sour natural gas for the production of CO-free H and sulfur chemicals. Several carbon allotropes were found to be active and selective for HRM, while the additional presence of transition metals led to further rate enhancements and outstanding stability (e.g., Ru supported on carbon black). Most metals are transformed to sulfides, but the carbon supports prevent sintering under the harsh reaction conditions. Supported by theoretical calculations, kinetic and isotopic investigations with representative catalysts showed that HS decomposition and the recombination of surface H atoms are quasi-equilibrated, while the first C-H bond scission is the kinetically relevant step. Theory and experiments jointly establish that dynamically formed surface sulfur dimers are responsible for methane activation and catalytic turnovers on sulfide and carbon surfaces that are otherwise inert without reaction-derived active sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979457PMC
http://dx.doi.org/10.1021/jacs.4c00738DOI Listing

Publication Analysis

Top Keywords

sulfur dimers
8
carbon
5
methane-hs reforming
4
reforming catalyzed
4
catalyzed carbon
4
carbon metal
4
metal sulfide
4
sulfide stabilized
4
stabilized sulfur
4
dimers reforming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!