Hydrogen Bond-Mediated Strong Plasticization for High-Performance Alginate Plastics.

Adv Mater

State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.

Published: June 2024

The increasingly severe plastic pollution has urged an inevitable trend to develop biodegradable plastic products that can take over synthetic plastics. As one of the most abundant natural polymers, polysaccharides are an ideal candidate to substitute synthetic plastics. The rigidity of polysaccharide chains principally allows for high strength and stiffness of their materials, however, challenges the facile orientation in material processing. Here, a general hydrogen bond-mediated plasticization strategy to regulate isotropic sodium alginate (SA) chains to a highly ordered state is developed, and alginate plastics with high performances are fabricated. It is revealed that hydroxyl groups in glycerol modulate the viscoelasticity of SA solids by forming strong hydrogen bonds with SA chains, achieving a large stretchability at a high solid content. Highly orientated alginate films exhibit a superior tensile strength of 575 MPa and toughness of 60.7 MJ m, outperforming most regenerated biomass films. The high solid content and large stretchability mediated by strong hydrogen bonding ensure plastic molding of solid-like SA with high fidelity. This hydrogen bond-mediated plasticity provides a facile but effective method to justify the high performances of polysaccharide-based plastics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202400648DOI Listing

Publication Analysis

Top Keywords

hydrogen bond-mediated
12
alginate plastics
8
synthetic plastics
8
high performances
8
strong hydrogen
8
large stretchability
8
high solid
8
solid content
8
high
6
hydrogen
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!