Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The crystal nucleation and growth mechanism of monodispersed metal-organic framework nanoparticles were studied using time-resolved light dynamic, electrokinetic, and powder X-ray diffraction methods. We confirmed that zeolitic imidazolate framework-8 (ZIF-8) nanocrystals follow a nonclassical crystal growth pathway, where a fast nucleation occurs with dense liquid clusters or nanocrystals forming spontaneously when two precursors are mixed. We also explored the zeta potential and solvodynamic size changes of ZIF-8 prepared by a surfactant-assisted synthesis. Three modulators, including 1-methylimidazole (1-mIm), tris(hydroxymethyl)aminomethane (THAM), and (1-hexadecyl)trimethylammonium bromide (CTAB), were studied. We found that 1-mIm dramatically increases the rate of nucleation of ZIF-8. With an increasing amount of 1-mIm, which functions as a coordination modulator, the size increases, and the zeta potential of ZIF-8 decreases. Whereas THAM, as both a coordination and a deprotonation modulator, increases the size and zeta potential of ZIF-8 simultaneously, CTAB, as a long alkyl cationic surfactant, mainly adsorbs on the surface of ZIF-8, and the zeta potential of the formed ZIF-8 is controlled by the amount of CTAB in solution compared with its critical micelle concentration. Overall, we reveal that the modulator type and concentration can be used to control the size and zeta potential of the dispersed ZIF-8 nanocrystals in a colloid system. The experiments also enable identification of the nucleation and crystal growth processes of ZIF-8. The findings will be applicable to other nanocrystals in colloid systems, which are used for heterogeneous catalysis and guest molecular loadings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976884 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.3c03193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!