Hypertrophic scar (HS) is characterized by an abnormal fibroblast-myofibroblast transformation; non-apoptosis of fibroblasts; and redundant expression of TGF-β1, VEGF, α-SMA, and collagen I/III. An HS affects patients' physical and psychological quality of life, leading to joint dysfunction and skin cancer. However, there is currently no satisfactory drug to treat this disorder. In this study, we constructed methylprednisolone sodium succinate (MPSS) encapsulated ZIF-90 (MPSS@ZIF-90) for the effective treatment of an HS. The encapsulation of MPSS in ZIF-90 can achieve the controllable drug release of MPSS and prolong its effective treatment time. MPSS@ZIF-90 enhanced the apoptosis of human hypertrophic scar fibroblasts and downregulated the overexpression of TGF-β1, VEGF, α-SMA, and collagen I/III both and . The instant injection of MPSS@ZIF-90 effectively intervened with the formation of the HS after 28 days. On the contrary, MPSS@ZIF-90 greatly reduced the HS with two injections and 14 days of treatment after the HS was formed. This work provides evidence of effective intervention in the formation of an HS and the therapeutic effectiveness of MPSS@ZIF-90 with short treatment periods . It suggests that MPSS@ZIF-90 can be used as a biomedical option in the treatment of skin wounds and may reveal the potential molecular basis for promising future antifibrotic agents against scarring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr05208g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!