Long-term phosphorus (P) fertilization results in P accumulation in agricultural soil and increases the risk of P leaching into water bodies. However, evaluating P leaching into groundwater is challenging, especially in clay soil with a high P sorption capacity. This study examined whether the combination of PO oxygen isotope (δO) analysis and the P saturation ratio (PSR) was useful to identify P enrichment mechanisms in groundwater. We investigated the groundwater and possible P sources in Kubi, western Japan, with intensive citrus cultivation. Shallow groundwater had oxic conditions with high PO concentrations, and orchard soil P accumulation was high compared with forest soil. Although the soil had a high P sorption capacity, the PSR was above the threshold, indicating a high risk of P leaching from the surface orchard soil. The shallow groundwater δO values were higher than the expected isotopic equilibrium with pyrophosphatase. The high PSR and δO orchard soil values indicated that P leaching from orchard soil was the major P enrichment mechanism. The Bayesian mixing model estimated that 76.6% of the P supplied from the orchard soil was recycled by microorganisms. This demonstrates the utility of δO and the PSR to evaluate the P source and biological recycling in groundwater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c07170DOI Listing

Publication Analysis

Top Keywords

orchard soil
20
soil
9
oxygen isotope
8
risk leaching
8
soil high
8
high sorption
8
sorption capacity
8
shallow groundwater
8
groundwater
7
high
7

Similar Publications

Long-term nitrogen fertilization alters the partitioning of amino acids between citrus leaves and fruits.

Front Plant Sci

January 2025

Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China.

Introduction: The growth of evergreen fruit trees is influenced by the interaction of soil nitrogen (N) and leaf amino acid contents. However, information on free amino acid contents in leaves of fruiting and non-fruiting branches during long-term N fertilizer application remains scarce.

Methods: Here, a four-year field experiment (2018-2021) in a citrus orchard revealed consistently lower total N and amino acid contents in leaves of fruiting compared to non-fruiting branches.

View Article and Find Full Text PDF

A Large-Scale Agricultural Land Classification Method Based on Synergistic Integration of Time Series Red-Edge Vegetation Index and Phenological Features.

Sensors (Basel)

January 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.

Agricultural land classification plays a pivotal role in food security and ecological sustainability, yet achieving accurate large-scale mapping remains challenging. This study presents methodological innovations through a multi-level feature enhancement framework that transcends traditional time series analysis. Using Shandong Province, northern China's agricultural heartland, as a case study, we first established a foundation with time series red-edge vegetation indices (REVI) from Sentinel-2 imagery, uniquely combining the normalized difference red edge index (NDRE) and plant senescence reflectance index (PSRI).

View Article and Find Full Text PDF

Abnormal Operation Detection of Automated Orchard Irrigation System Actuators by Power Consumption Level.

Sensors (Basel)

January 2025

Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea.

Information and communication technology (ICT) components, especially actuators in automated irrigation systems, are essential for managing precise irrigation and optimal soil moisture, enhancing orchard growth and yield. However, actuator malfunctions can lead to inefficient irrigation, resulting in water imbalances that impact crop health and reduce productivity. The objective of this study was to develop a signal processing technique to detect potential malfunctions based on the power consumption level and operating status of actuators for an automated orchard irrigation system.

View Article and Find Full Text PDF

Utilizing convolutional neural network (CNN) for orchard irrigation decision-making.

Environ Monit Assess

January 2025

Department of Environmental Management, Graduate School of Agriculture, Kindai University, Nara, Japan.

Efficient agricultural management often relies on farmers' experiential knowledge and demands considerable labor, particularly in regions with challenging terrains. To reduce these burdens, the adoption of smart technologies has garnered increasing attention. This study proposes a convolutional neural network (CNN)-based model as a decision-support tool for smart irrigation in orchard systems, focusing on persimmon cultivation in mountainous regions.

View Article and Find Full Text PDF

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!