A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Air Humidity Influence on Combustion of R-1234yf (CFCFCH), R-1234ze(E) (trans-CFCHCHF) and R-134a (CHFCF) Refrigerants. | LitMetric

The influence of air humidity on flame propagation in mixtures of hydrofluorocarbons (HFCs) with air was studied through numerical simulations and comparison with measurements from the literature. Water vapor added to the air in mixtures of fluorine rich hydrofluorocarbons (F/H≥1) can be considered as a fuel additive that increases the production of radicals (H, O, OH) and increases the overall reaction rate. The hydrofluorocarbon flame is typically a two-stage reaction proceeding with a relatively fast reaction in the first stage transitioning to a very slow reaction in the second stage which leads to the combustion equilibrium products. The transition to the second stage is determined by the consumption of hydrogen-containing species and formation of HF. Despite a relatively small effect of water on the adiabatic combustion temperature, its influence is significant on the reaction rate and on the temperature increase in the first stage of the combustion leading to the increase in burning velocity. The main reaction for converting HO to hydrogen-containing radicals and promoting combustion is HO+F=HF+OH, as demonstrated by reaction path analyses for the fluorine rich hydrofluorocarbons R-1234yf, R-1234ze(E), and R-134a (F/H = 2). The calculated burning velocity dependence on the equivalence ratio agrees reasonably well with available experimental measurements for R1234yf and R-1234ze(E) with and without the addition of water vapor. In agreement with experimental data, with water vapor, the maximum of burning velocity over is shifted to the lean mixtures (near = 0.8).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936444PMC
http://dx.doi.org/10.1016/j.combustflame.2024.113352DOI Listing

Publication Analysis

Top Keywords

water vapor
12
burning velocity
12
air humidity
8
fluorine rich
8
rich hydrofluorocarbons
8
reaction rate
8
second stage
8
reaction
7
combustion
5
air
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!