A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deciphering and integrating invariants for neural operator learning with various physical mechanisms. | LitMetric

Deciphering and integrating invariants for neural operator learning with various physical mechanisms.

Natl Sci Rev

Academy of Mathematics and Systems Science, Chinese Academy of Sciences (CAS), Beijing 100190, China.

Published: April 2024

Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose the physical invariant attention neural operator (PIANO) to decipher and integrate the physical invariants for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6%-82.2% on PDE forecasting tasks across varying coefficients, forces or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939376PMC
http://dx.doi.org/10.1093/nsr/nwad336DOI Listing

Publication Analysis

Top Keywords

operator learning
12
neural operator
8
physical
8
physical mechanisms
8
piano
5
deciphering integrating
4
integrating invariants
4
invariants neural
4
operator
4
learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!