Regenerative potential of platelet concentrates in chronic oral mucosal lesions.

J Oral Biol Craniofac Res

Department of Oral and Maxillofacial Sciences, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada.

Published: March 2024

Chronic oral mucosal diseases (COMDs) represent a significant challenge for clinicians and patients. They are commonly associated with chronic pain and negative effects on healing and patient's quality of life. Regenerative medicine including the use of biological autologous blood-derived substances (e.g., platelet concentrates [PCs]), has been reported to improve healing and reduce pain in orthopedic and maxillofacial surgeries as well as chronic oral mucosal diseases. In this review, we aim to describe the different types of PCs and their applications in the management of COMDs such as lichen planus, mucositis, pemphigus vulgaris, mucous membrane pemphigoid, and plasma cell mucositis, in terms of healing potential, pain control, and quality of life. Overall, PC applications seem to enhance healing and reduce pain in patients with COMDs. However, due to the small sample size and the lack of standardized clinical trials, further research is required to support these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937318PMC
http://dx.doi.org/10.1016/j.jobcr.2024.02.007DOI Listing

Publication Analysis

Top Keywords

chronic oral
12
oral mucosal
12
platelet concentrates
8
mucosal diseases
8
quality life
8
healing reduce
8
reduce pain
8
regenerative potential
4
potential platelet
4
chronic
4

Similar Publications

Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice.

Pharmaceutics

December 2024

Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.

Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).

View Article and Find Full Text PDF

Preparation and In Vitro/In Vivo Characterization of Mixed-Micelles-Loaded Dissolving Microneedles for Sustained Release of Indomethacin.

Pharmaceutics

November 2024

Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China.

Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.

View Article and Find Full Text PDF

Oral diseases, both acute and chronic, of infectious or non-infectious etiology, represent some of the most serious medical problems in dentistry. Data from the literature increasingly indicate that changes in the oral microbiome, and therefore, the overgrowing of pathological microflora, lead to a variety of oral-localized medical conditions such as caries, gingivitis, and periodontitis. In recent years, compelling research has been devoted to the use of natural antimicrobial peptides as therapeutic agents in the possible treatment of oral diseases.

View Article and Find Full Text PDF

AISMPred: A Machine Learning Approach for Predicting Anti-Inflammatory Small Molecules.

Pharmaceuticals (Basel)

December 2024

Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India.

Inflammation serves as a vital response to diverse harmful stimuli like infections, toxins, or tissue injuries, aiding in the elimination of pathogens and tissue repair. However, persistent inflammation can lead to chronic diseases. Peptide therapeutics have gained attention for their specificity in targeting cells, yet their development remains costly and time-consuming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!