The development of an efficient catalytic system for low-temperature acetylene semihydrogenation using nonnoble metals is important for the cost-effective production of polymer-grade pure ethylene. However, it remains challenging owing to the intrinsic low activity. Herein, we report a flexibly tunable catalyst design concept based on a pseudo-binary alloy, which enabled a remarkable enhancement in the catalytic activity, selectivity, and durability of a Ni-based material. A series of (NiCu)Ga/TiO catalysts exhibiting L1-type pseudo-binary alloy structures with various Cu contents ( = 0.2, 0.25, 0.33, 0.5, 0.6, and 0.75) were prepared for active site tuning. The optimal catalyst, (NiCu)Ga/TiO, exhibited outstandingly high catalytic activity among reported 3d transition metal-based systems and excellent ethylene selectivity (96%) and long-term stability (100 h) with near full conversion even at 150 °C. A mechanistic study revealed that NiCu hollow sites on the (111) surface weakened the strong adsorption of acetylene and vinyl adsorbate, which significantly accelerated the hydrogenation process and inhibited undesired ethane formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935689PMC
http://dx.doi.org/10.1039/d3sc03704eDOI Listing

Publication Analysis

Top Keywords

active site
8
site tuning
8
based pseudo-binary
8
low-temperature acetylene
8
acetylene semihydrogenation
8
pseudo-binary alloy
8
catalytic activity
8
tuning based
4
pseudo-binary alloys
4
alloys low-temperature
4

Similar Publications

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

Inhibitory mechanisms of galloylated forms of theaflavins on α-glucosidase.

Int J Biol Macromol

January 2025

School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China. Electronic address:

Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC values ranging from TFDG (0.26 mg/mL) < TF3'G (0.

View Article and Find Full Text PDF

Understanding Tankyrase Inhibitors and Their Role in the Management of Different Cancer.

Curr Cancer Drug Targets

January 2025

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.

Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.

View Article and Find Full Text PDF

Assignment of the N-terminal domain of mouse cGAS.

Biomol NMR Assign

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!