Pyrazinacenes are next generation N-heteroacenes and represent a novel class of stable n-type materials capable of accepting more than one electron and displaying intriguing features, including prototropism, halochromism, and redox chromism. Astonishingly, despite a century since their discovery, there have been no reports on the conjugated polymers of pyrazinacenes due to unknown substrate scope and lack of pyrazinacene monomers that are conducive to condensation polymerization. Breaking through these challenges, in this work, we report the synthesis of previously undiscovered and highly coveted conjugated polymers of pyrazinacenes. In order to understand the intricacies of conjugation extension within the acene and along the polymer backbone, a series of electronically diverse four pyrazinacene conjugated polymers were synthesized. Polymers synthesis required optimizing a few synthetic steps along the 12-step synthetic pathway. The generated pyrazinacene monomers are not amenable to the popular condensation polymerizations involving Pd or Cu catalysts. Gratifyingly, Pd and Cu free dehydrohalogenation polymerization of the monomer with HgCl resulted in high molecular weight organometallic conjugated pyrazinacene polymers within a few minutes at room temperature. The dual role played by the Hg(ii) during the polymerization, combined with the self-coupling of the RHgCl (intermediate), is at the core of successful polymerization. Notably, the self-coupling of intermediates challenges the strict stoichiometric balance typically required for step-growth polymerization and offers a novel synthetic strategy to generate high molecular weight conjugated polymers even with imbalanced monomer stoichiometries. A combination of electrochemical studies and DFT-B3LYP simulations indicated that the presence of the reduced pyrazine ring promotes interacene π-conjugation through the metal center, in contrast to completely oxidized tetrazaazaanthracene. The extension of conjugation results in 2 eV lower reduction potential for polymers compared to the monomer, placing the LUMO energy levels of these polymers on par with some of the best-known n-type polymers. Also, the presence of NH protons in the pyrazinacene polymers show ionochromism and red-shift UV-vis absorption maximum by 100 nm. This work not only shows a way to realize highly desirable and elusive pyrazinacene conjugated polymers but also paves the way for a library of n-type conjugated polymers that can undergo multi-electron reduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935667 | PMC |
http://dx.doi.org/10.1039/d3sc06552a | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.
This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).
View Article and Find Full Text PDFSmall
January 2025
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, Telangana, 500007, India.
Heterostructures comprise two or more different semiconducting materials stacked either as co-assemblies or self-sorted based on their dynamics of aggregates. However, self-sorting in heterostructures is rather significant in improving the short exciton diffusion length and charge separation. Despite small organic molecules being known for their self-sorting nature, macrocyclic are hitherto unknown owing to unrestrained assemblies from extended π-conjugated systems.
View Article and Find Full Text PDFWe have employed a triazine-based conjugated polymer network (CPN) for the selective detection of hypochlorite in a semi-aqueous environment. CPNs have been widely employed in gas capture, separation, and adsorption, but the fluorescent properties of CPNs possessing extensive π-conjugated systems tend to be unexplored. Herein, we report the photophysical properties of the CPN and investigate its sensing capability towards hypochlorite.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.
Selective therapeutic targeting of T-cell malignancies is difficult due to the shared lineage between healthy and malignant T cells. Current front-line chemotherapy for these cancers is largely nonspecific, resulting in frequent cases of relapsed/refractory disease. The development of targeting approaches for effectively treating T-cell leukemia and lymphoma thus remains a critical goal for the oncology field.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
To simplify the composition and improve the efficacy of metal-phenolic network (MPN)-based nanomedicine, herein, we designed an MPN platform to deliver programmed death ligand-1 (PD-L1) antibody (anti-PD-L1) for combined tumor chemo/chemodynamic/immune therapy. Here, generation 5 poly(amidoamine) dendrimers conjugated with gossypol (Gos) through boronic ester bonds were used as a synthetic polyphenol to coordinate Mn, and then complexed with anti-PD-L1 to obtain the nanocomplexes (for short, DPGMA). The prepared DPGMA exhibited good water dispersibility with a hydrodynamic size of 166.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!