The use of predators and predator odor as stressors is an important and ecologically relevant model for studying the impact of behavioral responses to threat. Here we summarize neural substrates and behavioral changes in rats resulting from predator exposure. We briefly define the impact predator exposure has on neural targets throughout development (neonatal, juvenile, and adulthood). These findings allow us to conceptualize the impact of predator exposure in the brain, which in turn may have broader implications for human disorders such as PTSD. Importantly, inclusion of sex as a biological variable yields distinct results that may indicate neural substrates impacted by predator exposure differ based on sex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938396 | PMC |
http://dx.doi.org/10.3389/fnmol.2024.1322273 | DOI Listing |
Cell Rep
January 2025
Department of Cell Biology and Anatomy, LSUHSC, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA. Electronic address:
Stress can alter behavior and contributes to psychiatric disorders by regulating the expression of the GluA2 AMPA receptor subunit. We have previously shown in mice that exposure to predator odor stress elevates GluA2 transcription in cerebellar molecular layer interneurons (MLIs), and MLI activity is required for fear memory consolidation. Here, we identified the critical involvement of adenylyl cyclase 5, in both the stress-induced increase in GluA2 in MLIs and the enhancement of fear memory.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Biology, University of Dayton, Dayton, OH 45469, USA.
Parental experiences can alter offspring phenotypes via transgenerational plasticity (TGP), which may prime offspring to adaptively respond to novel stressors, including novel predators. However, we know little about the types of sensory cues (e.g.
View Article and Find Full Text PDFHeredity (Edinb)
January 2025
Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
Maternal effects have been shown to play influential roles in many evolutionary and ecological processes. However, understanding how environmental stimuli induce within-generation responses that transverse across generations remains elusive, particularly when attempting to segregate confounding effects from offspring genotypes. This review synthesizes literature regarding resource- and predation-driven maternal effects in the model system Daphnia, detailing how the maternal generation responds to the environmental stimuli and the maternal effects seen in the offspring generation(s).
View Article and Find Full Text PDFToxics
December 2024
Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Institute of Marine Sciences, Shantou University, Shantou 515063, China.
With the rapid industrialization and urbanization of coastal areas, marine pollution (such as heavy metals) is increasingly contaminating the environment, posing significant public health risks. Eastern Guangdong, a key aquaculture and fisheries hub in China, has a growing market for aquatic products. Heavy metals persist in the environment and are difficult to degrade and bioaccumulate in marine organisms through the food web, presenting carcinogenic and mutagenic risks to humans, as top predators.
View Article and Find Full Text PDFMicroorganisms
November 2024
Institute of Integrative and Systems Biology, Laval University, Quebec, QC G1V 0A6, Canada.
Arctic char is a top predator in Arctic waters and is threatened by mercury pollution in the context of changing climate. Gill microbiota is directly exposed to environmental xenobiotics and play a central role in immunity and fitness. Surprisingly, there is a lack of literature studying the effect of mercury on gill microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!