Climbing stairs can become a daily obstacle for elderly people, and an exoskeleton can assist here. However, the exoskeletons that are designed to assist stair climbing are actuated in different ways. To find a minimal actuation configuration, we identify the assist phases by evaluating the power deficit of 11 healthy but weak elderly people (72.4 ± 2.1 years; 69-76 years; 1.67 ± 0.10 m; 74.88 ± 14.54 kg) compared to 13 younger people (24.0 ± 1.8 years; 22-28 years; 1.74 ± 0.10 m; 70.85 ± 11.91 kg) in a biomechanical study and discuss moment characteristics. Three-dimensional kinematics and ground reaction forces were collected, and kinematics, kinetics, and power characteristics of each subject for ascent and descent were calculated using inverse dynamics. Significant differences for power between both groups were assessed with statistical parametric mapping method using dynamic time warping. During ascent, the largest significant power deficit of the elderly subjects occurs in the single stance phase (SSP) during pull-up in the knee joint. During descent, significant mean power deficits of 0.2 and 0.8 W/kg for the highest deficit occur in the ankle joint in the beginning of the SSP and also in the knee joint in the same phase. Therefore, an exoskeleton should address the power deficit for knee extension (ascent: 1.0 ± 0.9 W/kg; descent: 0.3 ± 0.2 W/kg) and could assist the ankle during ascent and descent by an additional plantar flexion moment of 0.2 Nm/kg each.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936312 | PMC |
http://dx.doi.org/10.1017/wtc.2022.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!