Non-thermal technologies, primarily employed for microbial inactivation and quality preservation in foods, have seen a surge in interest, with non-thermal plasma garnering particular attention. Cold plasma exhibits promising outcomes, including enhanced germination, improved functional and rheological properties, and microorganism destruction. This has sparked increased exploration across various domains, notably in hydration and rheological properties for creating new products. This review underscores the manifold benefits of applying cold plasma to diverse food materials, such as cereal and millet flours, and gums. Notable improvements encompass enhanced functionality, modified color parameters, altered rheological properties, and reduced anti-nutritional factors. The review delves into mechanisms like starch granule fragmentation, elucidating how these processes enhance the physical and structural properties of food materials. While promising for high-quality food development, overcoming challenges in scaling up production and addressing legal issues is essential for the technology's commercialization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937106PMC
http://dx.doi.org/10.1016/j.fochx.2024.101266DOI Listing

Publication Analysis

Top Keywords

cold plasma
12
food materials
12
rheological properties
12
properties food
8
properties
5
plasma unveiling
4
unveiling impact
4
impact hydration
4
hydration rheology
4
rheology nutritional
4

Similar Publications

Bladder cancer often recurs, necessitating innovative treatments to reduce recurrence. We investigated non-thermal plasma's potential as a novel anti-cancer therapy, focusing on plasma-activated solution (PAS), created by exposing saline to non-thermal plasma. Our study aims to elucidate the biological effects of PAS on bladder cancer cell lines in vitro, as well as the combination with mitomycin C (MMC), using clinically relevant settings.

View Article and Find Full Text PDF

Spermidine antagonizes the anti-cancer effect of cold atmospheric plasma and induces transit G/G cell cycle arrest of triple negative breast cancers.

Free Radic Biol Med

January 2025

National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China. Electronic address:

Cancer remains as a global health threat, with the incidence of breast cancers keep increasing. Dis-regulated redox homeostasis has been considered with essential roles for tumor initiation and progression. Using triple negative breast cancers, the most malignant subtype of breast cancers, as the tumor model, we explored the roles of the anti-oxidant spermidine, the pro-oxidative tool cold atmospheric plasma (CAP), and their combined use in cancer growth, anti-oxidative ability and cell cycle.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has been utilized in various medical devices using its oxidative nature. Recent studies have provided evidence that CAP can facilitate the delivery of large, hydrophilic molecules through the epidermis to the dermis. On the other hand, a new approach called low-intensity CAP (LICAP) has been developed, allowing the plasma level to be controlled within a subtoxic range, thereby demonstrating various biological benefits without tissue damage.

View Article and Find Full Text PDF

Treatment options for recurrent high-risk non-muscle-invasive bladder cancer (HR NMIBC) and muscle-invasive bladder cancer (MIBC) are limited, highlighting a need for clinically effective, accessible, and better-tolerated alternatives. In this review we examine the clinical development program of TAR-200, a novel targeted releasing system designed to provide sustained intravesical delivery of gemcitabine to address the needs of patients with NMIBC and of those with MIBC. We describe the concept and design of TAR-200 and the clinical development of this gemcitabine intravesical system in the SunRISe portfolio of studies.

View Article and Find Full Text PDF

Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!