Flow cytometric analysis of peripheral blood neutrophil myeloperoxidase expression in myelodysplastic neoplasms.

Leukemia

Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France.

Published: April 2024

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-024-02223-9DOI Listing

Publication Analysis

Top Keywords

flow cytometric
4
cytometric analysis
4
analysis peripheral
4
peripheral blood
4
blood neutrophil
4
neutrophil myeloperoxidase
4
myeloperoxidase expression
4
expression myelodysplastic
4
myelodysplastic neoplasms
4
flow
1

Similar Publications

Identification and monitoring of cell heterogeneity from plasmid recombination during limonene production.

Appl Microbiol Biotechnol

January 2025

NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Kent Ridge, 117456, Singapore.

Detecting alterations in plasmid structures is often performed using conventional molecular biology. However, these methods are laborious and time-consuming for studying the conditions inducing these mutations, which prevent real-time access to cell heterogeneity during bioproduction. In this work, we propose combining both flow cytometry and fluorescence-activated cell sorting, integrated with mechanistic modelling to study conditions that lead to plasmid recombination using a limonene-producing microbial system as a case study.

View Article and Find Full Text PDF

Insights into the Genomic Background of Nine Common Chinese Medicinal Plants by Flow Cytometry and Genome Survey.

Plants (Basel)

December 2024

Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Medicinal plants have long played a crucial role in healthcare systems, but limited genomic information on these species has impeded the integration of modern biological technologies into medicinal plant research. In this study, we selected nine common medicinal plants, each belonging to a different plant family, including (Chloranthaceae), (Vitaceae), (Fabaceae), (Cucurbitaceae), (Polygonaceae), (Caryophyllaceae), (Rubiaceae), (Lamiaceae), and (Asteraceae), to estimate their genome sizes and conduct preliminary genomic surveys. The estimated genome sizes by flow cytometry were 3.

View Article and Find Full Text PDF

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Discovery of Carbonic Anhydrase 9 as a Novel CLEC2 Ligand in a Cellular Interactome Screen.

Cells

December 2024

Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany.

Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors.

View Article and Find Full Text PDF

Unlabelled: Chronic back pain (CBP) is the leading cause of disability affecting 1 in 10 people worldwide. Symptoms are marked by persistent lower back pain, reduced mobility, and heightened cold sensitivity. Here, we utilize a mouse model of CBP induced by injecting urokinase-type plasminogen activator (uPA), a proinflammatory agent in the fibrinolytic pathway, between the L2/L3 lumbar vertebrae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!