Gas-entry pressure impact on the evaluation of hydrogen migration at different scales of a deep geological disposal of radioactive waste.

Sci Rep

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV, SPDR, UEMIS, 92262, Fontenay-aux-Roses, France.

Published: March 2024

Although the importance of gas-entry pressure in simulating two-phase liquid-gas flow in porous media has been studied at the column and borehole scales, its impact on the simulation of transient hydraulic-gas at different scales of a deep geological repository of radioactive waste (DGR) in low permeability clay rock during the post-closure phase has not yet been studied. The purpose of this work is to show that neglecting this phenomenon can lead to underestimation of the maximum gas pressure and water-gas fluxes simulated within the host rock and backfilled drift network. This could impact the performance of the engineered barrier system of a DGR. Simulations performed for a high-level waste disposal cell and for a simplified repository composed of hundreds of disposal cells situated in a clay host rock, show that gas preferentially migrates through the DGR components with low capillary entry pressures, such as the excavation damaged zone (Refers to the zone where fractures develop due to failure of the rock mass around galleries after tunneling) (EDZ), the engineered barriers materials (backfill, bentonite-plug…) and interfaces between the EDZ and these materials. Such a result could have significant consequences on the performance of a repository, due to the accumulation of gas in the drift network and high increase of gas pressure, which could lead to the host rock hydraulic fracturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940707PMC
http://dx.doi.org/10.1038/s41598-024-56454-yDOI Listing

Publication Analysis

Top Keywords

host rock
12
gas-entry pressure
8
scales deep
8
deep geological
8
radioactive waste
8
gas pressure
8
drift network
8
rock
5
pressure impact
4
impact evaluation
4

Similar Publications

serovar Hvittingfoss, a member of the non-typhoidal group, is an important foodborne serovar most frequently identified in regions (Australia, Belgium, and the United States) with active surveillance systems. This serovar has been implicated in outbreaks of foodborne illness. Soft cheese, crab cocktail, beef, and rock melon are commonly involved in these outbreaks.

View Article and Find Full Text PDF

Old but not ancient: Rock-leached organic carbon drives groundwater microbiomes.

Sci Total Environ

December 2024

Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena_Leipzig, Germany. Electronic address:

More than 90% of earth's microbial biomass resides in the continental subsurface, where sedimentary rocks provide the largest source of organic carbon (C). While many studies indicate microbial utilization of fossil C sources, the extent to which rock-organic C is driving microbial activities in aquifers remains largely unknown. Here we incubated oxic and anoxic groundwater with crushed carbonate rocks from the host aquifer and an outcrop rock of the unsaturated zone characterized by higher organic C content, and compared the natural abundance of radiocarbon (C) of available C pools and microbial biomarkers.

View Article and Find Full Text PDF

Advances in bacteriophage genome sequencing and regulatory approvals of some bacteriophages in various applications have renewed interest in these antibacterial viruses as a potential solution to persistent food safety challenges. Here, we analyzed in depth the genome of the previously studied bacteriophage OSYSP (phage OSYSP), revealed its application-related characteristics, and optimized its enumeration techniques for facilitating industrial implementation. We previously sequenced phage OSYSP genome completely by combining results from Illumina Miseq and Ion Torrent sequencing platforms and completing the remaining sequence gaps using PCR.

View Article and Find Full Text PDF

Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles.

View Article and Find Full Text PDF

High lithium (Li) and cesium (Cs) concentrations in the Qinghai-Xizang Plateau thermal springs pose environmental and health challenges, but their origins and enrichment mechanisms remain unclear. This study focuses on the Sogdoi geothermal field, located along the southern Karakoram Fault, to investigate these processes. Multi-isotope analyses (H, O, Li, Sr) reveal that Li and Cs predominantly originate from the host rocks, especially granitoids and meta-sedimentary rocks, rather than from magmatic fluids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!