The ability to scale two-dimensional (2D) material thickness down to a single monolayer presents a promising opportunity to realize high-speed energy-efficient memristors. Here, we report an ultra-fast memristor fabricated using atomically thin sheets of 2D hexagonal Boron Nitride, exhibiting the shortest observed switching speed (120 ps) among 2D memristors and low switching energy (2pJ). Furthermore, we study the switching dynamics of these memristors using ultra-short (120ps-3ns) voltage pulses, a frequency range that is highly relevant in the context of modern complementary metal oxide semiconductor (CMOS) circuits. We employ statistical analysis of transient characteristics to gain insights into the memristor switching mechanism. Cycling endurance data confirms the ultra-fast switching capability of these memristors, making them attractive for next generation computing, storage, and Radio-Frequency (RF) circuit applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940724 | PMC |
http://dx.doi.org/10.1038/s41467-024-46372-y | DOI Listing |
Sci Rep
January 2025
INFN-Laboratori Nazionali di Frascati, Via E. Fermi, 54, 00044, Frascati, Italy.
We analytically solve the Landau-Lifshitz equations for the collective magnetization dynamics in a synthetic antiferromagnet (SAF) nanoparticle and uncover a regime of barrier-free switching under a short small-amplitude magnetic field pulse applied perpendicular to the SAF plane. We give examples of specific implementations for forming such low-power and ultra-fast switching pulses. For fully optical, resonant, barrier-free SAF switching we estimate the power per write operation to be pJ, 10-100 times smaller than for conventional quasi-static rotation, which should be attractive for memory applications.
View Article and Find Full Text PDFNat Commun
December 2024
Engineering Science and Mechanics, Penn State University, University Park, PA, USA.
Incipient ferroelectricity bridges traditional dielectrics and true ferroelectrics, enabling advanced electronic and memory devices. Firstly, we report incipient ferroelectricity in freestanding SrTiO nanomembranes integrated with monolayer MoS to create multifunctional devices, demonstrating stable ferroelectric order at low temperatures for cryogenic memory devices. Our observation includes ultra-fast polarization switching (~10 ns), low switching voltage (<6 V), over 10 years of nonvolatile retention, 100,000 endurance cycles, and 32 conductance states (5-bit memory) in SrTiO-gated MoS transistors at 15 K and up to 100 K.
View Article and Find Full Text PDFModern data center networks (DCNs) require optical switches with ultra-low loss, ultra-fast reconfiguration speed, high throughput, and high extinction ratio performances. In this work, we propose the design of a 5 × 5 optical switch at 1550 nm based on a piezo-actuator serving as a translating input optical source, and a beam-steering system built of spherical lenses to complete the switching behaviour. An ultra-fast actuator switching speed is estimated as 1.
View Article and Find Full Text PDFOptical differential operation is an ultra-fast edge information extraction technology that enables identifying the image features, whereas current optical differentiators mainly operate along one or two differential orientations and is incompetent for switching the differential orientation. A reflection-type orientation-switchable optical differentiator is proposed and the BK7-MoS interface is used as an example to analyze the edge detection performance. Theory suggests that there are dual modulation methods, one is tuning the incident polarization angle with a Brewster incident angle, and the other one is altering the incident angle with a nearly vertical incident polarization angle.
View Article and Find Full Text PDFNatl Sci Rev
November 2024
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Edge detection is a fundamental operation for feature extraction in image processing. The all-optical method has aroused growing interest owing to its ultra-fast speed, low energy consumption and parallel computation. However, current optical edge detection methods are generally limited to static devices and fixed functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!