RNA m6A dynamic modification mediated by nucleus-localized FTO is involved in follicular reserve.

Zool Res

College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, Shandong 266109, China. E-mail:

Published: March 2024

In eukaryotic organisms, the most common internal modification of messenger RNA (mRNA) is N6-methyladenosine (m6A). This modification can be dynamically and reversibly controlled by specific enzymes known as m6A writers and erasers. The fat-mass and obesity-associated protein (FTO) catalyzes RNA demethylation and plays a critical role in various physiological and pathological processes. Our research identified dynamic alterations in both m6A and FTO during the assembly of primordial follicles, with an inverse relationship observed for m6A levels and nuclear-localized FTO expression. Application of small interfering RNA (siRNA) altered the expression of genes related to cell proliferation, hormone regulation, and cell chemotaxis, and affected RNA alternative splicing. Overexpression of the full-length gene led to changes in m6A levels, alternative splicing of , cell proliferation, cell cycle progression, and proportion of primordial follicles. Conversely, overexpression of lacking a nuclear localization signal (NLS) did not significantly alter m6A levels or primordial follicle assembly. These findings suggest that FTO, localized in the nucleus but not in the cytoplasm, regulates RNA m6A demethylation and plays a role in cell proliferation, cell cycle progression, and primordial follicle assembly. These results highlight the potential of m6A and its eraser FTO as possible biomarkers and therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017081PMC
http://dx.doi.org/10.24272/j.issn.2095-8137.2023.236DOI Listing

Publication Analysis

Top Keywords

m6a levels
12
cell proliferation
12
rna m6a
8
m6a
8
demethylation plays
8
primordial follicles
8
alternative splicing
8
proliferation cell
8
cell cycle
8
cycle progression
8

Similar Publications

Alpha-ketoglutarate-dependent dioxygenase, also known as fat mass and obesity-associated protein (FTO), is an RNA demethylase that mediates the demethylation of N,2-O-dimethyladenosine (m6Am) and N-methyladenosine (m6A). Both m6Am and m6A are prevalent modifications in mRNA and affect different aspects of transcript biology, including splicing, nuclear export, translation efficiency, and degradation. The role of FTO during (herpes) virus infection remains largely unexplored.

View Article and Find Full Text PDF

Transcriptome-wide dynamics of mA methylation in ISKNV and Siniperca chuatsi cells infected with ISKNV.

BMC Genomics

January 2025

State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.

View Article and Find Full Text PDF

METTL3-Mediated m6A Modification of ISG15 mRNA Regulates Doxorubicin-Induced Endothelial Cell Apoptosis.

J Cell Mol Med

January 2025

Zhengzhou Key Laboratory of Cardiovascular Aging, Henan Province Key Laboratory for Prevention and Treatment of Coronary Heart Disease, National Health Commission key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China.

N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Background: Recent studies show that N6-methyladenosine (m6A) plays an important role in the pathogenesis of the Alzheimer's disease (AD), while the mechanisms involved were studied insufficiently.

Aims: The present study aimed to explore the effect of human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2), one of the m6A-binding proteins on the progression of AD.

Materials & Methods: The mRNA and protein expression level were determined using RT-qPCR and western blot, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!