Forest insect outbreaks cause large changes in ecosystem structure, composition, and function. Humans often respond to insect outbreaks by conducting salvage logging, which can amplify the immediate effects, but it is unclear whether logging will result in lasting differences in forest structure and dynamics when compared with forests affected only by insect outbreaks. We used 15 years of data from an experimental removal of Tsuga canadensis (L.) Carr. (Eastern hemlock), a foundation tree species within eastern North American forests, and contrasted the rate, magnitude, and persistence of response trajectories between girdling (emulating mortality from insect outbreak) and timber harvest treatments. Girdling and logging were equally likely to lead to large changes in forest structure and dynamics, but logging resulted in faster rates of change. Understory light increases and community composition changes were larger and more rapid in the logged plots. Tree seedling and understory vegetation abundance increased more in the girdled plots; this likely occurred because seedlings grew rapidly into the sapling- and tree-size classes after logging and quickly shaded out plants on the forest floor. Downed deadwood pools increased more after logging but standing deadwood pools increased dramatically after girdling. Understory light levels remained elevated for a longer time after girdling. Perhaps because the window of opportunity for understory species to establish was longer in the girdled plots, total species richness increased more in the girdled than logged plots. Despite the potential for greater diversity in the girdled plots, Betula lenta L. (black birch) was the most abundant tree species recruited into the sapling- and tree-size classes in both the girdled and logged plots and is poised to dominate the new forest canopy. The largest difference between the girdling and logging treatments-deadwood structure and quantity-will persist and continue to bolster aboveground carbon storage and structural and habitat diversity in the girdled plots. Human responses to insect outbreaks hasten forest reorganization and remove structural resources that may further alter forest response to ongoing climate stress and future disturbances.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2957DOI Listing

Publication Analysis

Top Keywords

insect outbreaks
16
girdled plots
16
tree species
12
logged plots
12
logging
8
foundation tree
8
large changes
8
forest structure
8
structure dynamics
8
girdling logging
8

Similar Publications

Dengue's climate conundrum: how vegetation and temperature shape mosquito populations and disease outbreaks.

BMC Public Health

January 2025

Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand.

Introduction: Dengue, a prevalent mosquito-borne viral disease in tropical regions, is influenced by environmental factors such as rainfall, temperature, and urbanization. This study aims to assess the effects of microclimate, vegetation, and Aedes species distribution on dengue transmission in distinct hotspot and non-hotspot locations.

Methods: This cohort study was conducted in two sites within Selangor, Malaysia: a recurrent dengue hotspot and a non-dengue hotspot.

View Article and Find Full Text PDF

Regional patterns and climatic predictors of viruses in honey bee (Apis mellifera) colonies over time.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Honey bee viruses are serious pathogens that can cause poor colony health and productivity. We analyzed a multi-year longitudinal dataset of abundances of nine honey bee viruses (deformed wing virus A, deformed wing virus B, black queen cell virus, sacbrood virus, Lake Sinai virus, Kashmir bee virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute paralysis virus) in colonies located across Canada to describe broad trends in virus intensity and occurrence among regions and years. We also tested climatic variables (temperature, wind speed, and precipitation) as predictors in an effort to understand possible drivers underlying seasonal patterns in viral prevalence.

View Article and Find Full Text PDF

Biological control of ticks using entomopathogenic fungi (EPF) is a highly desired alternative to chemical acaricides for the control of tick-borne pathogens. For Metarhizium anisopliae isolate ICIPE 7, one of these EPFs, efficacy against multiple tick species has been demonstrated in laboratory and field settings. However, we currently have little quantitative understanding of how EPFs can impact transmission.

View Article and Find Full Text PDF

Background: N, N-diethyl-m-toluamide (DEET), an active ingredient prevalent in insect repellents, has its effects on human health under ongoing debate and scrutiny.

Objective: This study aimed to investigate the association between exposure to DEET and arthritis outcomes within the broader adult demographic, leveraging data obtained from the National Health and Nutrition Examination Survey (NHANES).

Methods: 3-diethyl-carbamoyl benzoic acid (DCBA) was used as a specific indicator of DEET exposure.

View Article and Find Full Text PDF

Climate change and anthropogenic disturbance in agricultural production systems can facilitate shifts in the distribution of arthropod pest species and in the range of plant hosts on which they feed. This study presents the first record of Tropical Sod Webworm (TSW), Herpetogramma phaeopteralis Guenée (Lepidoptera: Crambidae: Spilomelinae), on native or nativized species of the genus Axonopus (Poaceae) in Brazil. The occurrence of population outbreaks of this species was observed in March and April of 2024 among smallholder cattle farmers in Capão Alto and Campo Belo do Sul, both municipalities situated in the highlands of Santa Catarina State, southern Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!