A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expeditive carbofuran pesticide degradation by submerged thermal plasma and its accelerated mineralization by persulfate addition. | LitMetric

Rapid degradation of carbofuran (CBF) pesticide is effectively achieved by submerged thermal plasma (STP) without and with the addition of persulfate (PS) at two different concentrations (10 and 20 ppm). Degradation efficiency was examined using high-performance liquid chromatography (HPLC), and mineralization percentage was determined by total organic carbon (TOC) analysis. Adding 10 ppm PS showed higher degradation and mineralization percentages of 99.5% and 65.2%, respectively, than mere plasma treatment and 20 ppm PS addition to CBF solution. A relatively higher energy yield of 40 mg/kWh and a first order kinetic reaction rate of 0.262 min were obtained in the 10 PS added STP treatment. Liquid chromatography mass spectrometry (LCMS) analysis illustrated reaction intermediates formed during plasma treatment. Scavenger investigation implied that OH radical is the prime cause of CBF degradation, as degradation percentage declined to 50% in all conditions. Toxicity assessment of CBF and its degradation products was predicted using Toxicity estimation software tool (TEST), and plasma treated solutions (PTS) were experimentally investigated on Eudrilus eugeniae earthworms by monitoring its mortality rate, self-assemblage, and histopathological analysis. A lower mortality rate (46%) and self-assemblage (167 s) of earthworms were detected for plasma treated CBF than for the other conditions. The results reveal that PTS is less toxic for earthworms than untreated CBF solution. These findings imply that STP is an effective technique for bio-recalcitrant pollutants degradation in agrochemical industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.123779DOI Listing

Publication Analysis

Top Keywords

degradation
8
submerged thermal
8
thermal plasma
8
liquid chromatography
8
plasma treatment
8
cbf solution
8
cbf degradation
8
plasma treated
8
mortality rate
8
plasma
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!