Even though subconjunctival injections are used in clinics, their quantitative pharmacokinetics has not been studied systematically. For this purpose, we evaluated the ocular and plasma pharmacokinetics of subconjunctival dexamethasone in rabbits. Intravenous injection was also given to enable a better understanding of the systemic pharmacokinetics. Dexamethasone concentrations in plasma (after subconjunctival and intravenous injections) and four ocular tissues (iris-ciliary body, aqueous humour, neural retina and vitreous) were analysed using LC-MS/MS. Population pharmacokinetic modelling for plasma data from both injection routes were used, and for first time the constant rate of absorption of dexamethasone from the subconjunctival space into plasma was estimated (k = 0.043 min, i.e. absorption half-life of 17.3 min). Non-compartmental analysis was used for the ocular data analysis and resulting in ocular drug exposure of iris-ciliary body (AUC= 41984 min·ng/g) > neural retina (AUC= 25511 min·ng/g) > vitreous (AUC= 7319 min·ng/mL) > aqueous humour (AUC= 6146 min·ng/mL). The absolute bioavailability values after subconjunctival injection, reported for the first time, were 0.74 % in aqueous humour (comparable to topical dexamethasone suspensions), and 0.30 % in vitreous humour (estimated to be higher than in topical administration). These novel and comprehensive pharmacokinetic data provide valuable information on the potential for exploiting this route in ocular drug development for treating both, anterior and posterior segment ocular diseases. Moreover, the new generated dexamethasone-parameters are a step-forward in building predictive pharmacokinetic models to support the design of new subconjunctival dexamethasone formulations, which may sustain drug effect for longer period of time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2024.114260 | DOI Listing |
Acta Pharm Sin B
December 2024
Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.
View Article and Find Full Text PDFEpilepsia
January 2025
Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina.
Objective: Identifying factors influencing cannabidiol (CBD) exposure can optimize treatment efficacy and safety. We aimed to describe the population pharmacokinetics of CBD in children with drug-resistant developmental and epileptic encephalopathies (DEEs) and assess the influence of environmental, pharmacological, and clinical characteristics on CBD systemic exposure.
Methods: Data from two pharmacokinetic studies of patients aged 2-18 years with DEEs were included (N = 48 patients).
J Vis Exp
December 2024
Department of Ophthalmology and Visual Neurosciences, University of Minnesota;
G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.
View Article and Find Full Text PDFJ Vet Pharmacol Ther
January 2025
Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
The objective of this study was to implement population pharmacokinetic (PPK) of enrofloxacin (EF) in grass carp (Ctenopharyngodon idella) after a single oral administration and a single intravenous administration based on a nonlinear mixed effect model. The plasma samples collected by the sparse sampling method were detected by high-performance liquid chromatography with a fluorescent detector. The initial pharmacokinetic (PK) parameters were evaluated by reference search and the calculation of a naïve pooled method.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
School of Medicine, Kyungpook National University and Department of Clinical Pharmacology and Therapeutics, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
Background: YYD601 is a new dual delayed-release formulation of esomeprazole, developed to enhance plasma exposure and prolong the duration of acid suppression.
Purpose: This study aimed to evaluate the safety, pharmacokinetic (PK), and pharmacodynamic (PD) profiles of YYD601 20 mg following single and multiple oral administrations in healthy, fasting adult Koreans, and to compare these outcomes to those of the conventional esomeprazole 20 mg capsule.
Methods: A randomized, open-label, two-period crossover study was conducted in 28 participants, who were divided into two treatment groups: one group received YYD601 20 mg, and the other received conventional esomeprazole 20 mg, once daily for five consecutive days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!