Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear. We analyzed the differences between the susceptible strain 871 and a near-isogenic resistant strain 871C. The survival of strain 871C was significantly greater than that of 871 after oral and subcutaneous exposure to BmNPV. Strain 871C exhibited a nearly 10,000-fold higher LD50 for BmNPV compared to 871. BmNPV proliferation was significantly inhibited in all tested tissues of strain 871C using HE strain and fluorescence analysis. Strain 871C exhibited cellular resistance to BmNPV rather than peritrophic membrane or serum resistance. Strain 871C suppressed the expression of the viral early gene Bm60. This led to the inhibition of BmNPV DNA replication and late structural gene transcription based on the cascade regulation of baculovirus gene expression. Bm60 could also interact with the viral DNA binding protein and alkaline nuclease, as well as host proteins Methylcrotonoyl-CoA carboxylase subunit alpha, mucin-2-like protein, and 30 K-8. Overexpression of 30 K-8 significantly inhibited BmNPV proliferation. These results increase understanding of the molecular mechanism behind silkworm resistance to BmNPV and suggest targets for the breeding of resistant silkworm strains and the controlling pest of Lepidoptera.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130842 | DOI Listing |
Int J Biol Macromol
August 2024
State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China. Electronic address:
The 871C silkworm strain exhibits a high level of resistance to Bombyx mori nucleopolyhedrovirus (BmNPV), making it a valuable variety for the sericulture industry. Understanding the underlying mechanism of its resistance holds great biological significance and economic value in addressing viral disease risks in sericulture. Initially, we infected the resistant strain 871C and its control strain 871 with BmNPV and conducted secondary infection experiments using the progeny occlusion bodies (OBs).
View Article and Find Full Text PDFInt J Biol Macromol
April 2024
State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China. Electronic address:
Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear.
View Article and Find Full Text PDFPestic Biochem Physiol
February 2019
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China. Electronic address:
Melanization mediated by the prophenoloxidase-activating system (proPO) is an important immune response in invertebrates. However, the role of melanization on viral infection has not been wildly revealed in Bombyx mori (B. mori), silkworm.
View Article and Find Full Text PDFInsect Mol Biol
August 2019
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens that causes severe economic losses to sericulture. Comparative transcriptomics analysis has been widely applied to explore the antiviral mechanism in resistant strains. Here, to identify genes involved in BmNPV infection, we identified differentially expressed genes (DEGs) and performed weighted gene co-expression network analysis (WGCNA) between two Bombyx mori strains: strain 871 (susceptible to BmNPV infection) and the near-isogenic strain 871C (resistant to BmNPV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!