This study aimed to enhance carboxymethyl cellulose (CMC)-based films by incorporating zinc oxide nanoparticles (ZnO NPs) and cress seed mucilage (CSM), with a view to augmenting the physical, mechanical, and permeability properties of the resulting nanocomposite films. For the first time, CSM was exploited as a green surfactant to synthetize ZnO NPs using hydrothermal method. Seven distinct film samples were meticulously produced and subjected to a comprehensive array of analyses. The findings revealed that the incorporation of CSM/ZnO-5 % improved the physical properties of the films, demonstrating a significant reduction in moisture content and water vapor permeability (WVP). Increasing the concentration of NPs in conjunction with CSM markedly decreased the solubility of the nanocomposites by up to 56 %. The films containing CSM/ZnO showed higher tensile strength and elongation at the break values. The UV absorption of the films exhibited a substantial rise with the addition of ZnO NPs, particularly with an increased content in the presence of CSM. The thermal stability of nanocomposites containing a high concentration of CSM/ZnO exhibited an improvement compared to the control sample. In light of these results, the CMC/CSM/ZnO-5 % film emerges as a promising candidate for a biocompatible packaging material, exhibiting favorable physical characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130849DOI Listing

Publication Analysis

Top Keywords

zno nps
12
cress seed
8
seed mucilage
8
green surfactant
8
films
5
development carboxymethyl
4
carboxymethyl cellulose-based
4
cellulose-based nanocomposite
4
nanocomposite incorporated
4
zno
4

Similar Publications

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.

View Article and Find Full Text PDF

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Decoding Plant-Based Green Synthesis of Zinc Oxide Nanoparticles.

Chem Biodivers

January 2025

Physics Department, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 6283), Institut des Molécules et Matériaux du Mans, Le Mans Université, Le Mans, France.

Article Synopsis
  • This study compares the behavior of two plant species and their extracts in synthesizing zinc oxide nanoparticles from zinc nitrate hexahydrate.
  • Sugars, particularly glucose and sucrose, play a crucial role in this synthesis, comprising over 70% of the dried extract.
  • The process can successfully occur at low temperatures (120°C) but requires a specific ratio of reactants to ensure the production of "clean" ZnO nanoparticles.
View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!