Salicylic acid- and ethylene-dependent effects of the ER stress-inducer tunicamycin on the photosynthetic light reactions in tomato plants.

J Plant Physiol

Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726, Szeged, Hungary. Electronic address:

Published: April 2024

Plant hormones such as ethylene (ET) and salicylic acid (SA) have an elementary role in the regulation of ER stress and unfolded protein response (UPR) in plants via modulating defence responses or inducing oxidative stress. Chloroplasts can be sources and targets of reactive oxygen species (ROS) that affect photosynthetic efficiency, which has not been investigated under tunicamycin (Tm)-induced ER stress. In this study, the direct and indirect effects of Tm on chloroplastic ROS production were first investigated in leaves of wild-type tomato (Solanum lycopersicum L.) plants. Secondly changes in activities of photosystem II and I were analysed under Tm exposure and after application of the chemical chaperone 4-phenylbutyrate (PBA) in different genotypes, focusing on the regulatory role of SA and ET Tm treatments significantly but indirectly induced ROS production in tomato leaves and in parallel it decreased the effective quantum yield of PSII [Y(II)] and PSI [Y(I)], as well as the photochemical quenching coefficient (qP) and the quantum yield of non-photochemical energy dissipation in PSI due to acceptor-side limitation [Y(NA)]. At the same time, Tm increased non-photochemical quenching (NPQ) and cyclic electron flow (CEF) in tomato leaves after 24 h. However, the photosynthetic activity of the SA hydroxylase-overexpressing NahG tomato plants was more severely affected by Tm as compared to wild-type and ET-insensitive Never ripe (Nr) plants. These results suggest the protective role of SA in the regulation of photosynthetic activity contributing to UPR and the survival of plants under ER stress. Interestingly, the activation of photoprotective mechanisms by NPQ was independent of SA but dependent on active ET signalling under ER stress, whereas CEF was reduced by ET due to its higher ratio in Nr plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2024.154222DOI Listing

Publication Analysis

Top Keywords

tomato plants
8
role regulation
8
ros production
8
tomato leaves
8
quantum yield
8
photosynthetic activity
8
plants
7
tomato
5
stress
5
salicylic acid-
4

Similar Publications

Tomato (Solanum lycopersicum) is an important crop but frequently experiences saline-alkali stress. Our previous studies have shown that exogenous spermidine (Spd) could significantly enhance the saline-alkali resistance of tomato seedlings, in which a high concentration of Spd and jasmonic acid (JA) exerted important roles. However, the mechanism of Spd and JA accumulation remains unclear.

View Article and Find Full Text PDF

Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.

View Article and Find Full Text PDF

An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening.

Plant Cell

December 2024

Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China.

A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.

View Article and Find Full Text PDF

Suppression of TGA2-Mediated Salicylic Acid Defence by Tomato Yellow Leaf Curl Virus C2 via Disruption of TCP7-Like Transcription Factor Activity in Tobacco.

Plant Cell Environ

January 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China.

Tomato yellow leaf curl virus (TYLCV) is a significant threat to tomato cultivation globally, transmitted exclusively by the whitefly Bemisia tabaci. While previous research suggests that the TYLCV C2 protein plays a role in fostering mutualistic interactions between the virus and its insect vectors, the specific mechanisms remain unclear. In this study, we show that the C2 protein interferes with the salicylic acid (SA) defence pathway by disrupting TCP7-like transcription factor-mediated regulation of TGA2 expression.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!