The NAC gene family in the halophyte Limonium bicolor: Identification, expression analysis, and regulation of abiotic stress tolerance.

Plant Physiol Biochem

Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China; Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China. Electronic address:

Published: March 2024

NAC transcription factors regulate plant growth, development, and stress responses. However, the number, types, and biological functions of Limonium bicolor LbNAC genes have remained elusive. L. bicolor secretes excessive salt ions through salt glands on its stems and leaves to reduce salt-induced damage. Here, we identified 63 NAC members (LbNAC1-63) in L. bicolor, which were unevenly distributed across eight chromosomes. Cis-elements in the LbNAC promoters were related to growth and development, stress responses, and phytohormone responses. We observed strong colinearity between LbNACs and GmNACs from soybean (Glycine max). Thus, LbNAC genes may share similar functions with GmNAC genes. Expression analysis indicated that 16 LbNAC genes are highly expressed in roots, stems, leaves, and flowers, whereas 17 LbNAC genes were highly expressed throughout salt gland development, suggesting that they may regulate this developmental stage. Silencing LbNAC54 in L. bicolor decreased salt gland density, salt secretion from leaves, and overall salt tolerance. In agreement, genes related to salt gland development were significantly downregulated in LbNAC54-silenced lines. Our findings shed light on LbNAC genes and help elucidate salt gland development and salt secretion in L. bicolor. Our data also provide insight into NAC functions in halophytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108462DOI Listing

Publication Analysis

Top Keywords

lbnac genes
20
salt gland
16
gland development
12
salt
9
limonium bicolor
8
expression analysis
8
growth development
8
development stress
8
stress responses
8
stems leaves
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!