A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Competition between ocean thermal structure and tropical cyclone characteristics modulates ocean environmental responses in the Yellow and Bohai Seas. | LitMetric

To study the environmental responses of tropical cyclones (TCs) in continental shelf regions, TCs passing over the Yellow Sea and Bohai Sea (YBS) during 2002-2020 were investigated, with a special focus on how competition between ocean thermal structure and TC characteristics modulates ocean surface changes. The spatial distributions of the climatic mixed layer depth (MLD), accumulated wind forcing power index (WPi), accumulated sea surface temperature (SST) changes and accumulated chlorophyll (Chl-a) changes in the YBS were calculated. The linear regressions indicate that both the TC-induced SST cooling and TC-induced Chl-a increase are correlated with the TC wind speed rather than the translation speed, especially when the TC forcing depth (Z) is greater than the MLD. Otherwise, both the changes in SST and Chl-a are correlated with the TC translation speed when Z is shallower than the MLD. Further study has shown that whether TCs can break the MLD is also a key condition for oceanic responses. In the southern YBS, which has a deep-sea basin and MLD, the TC wind speed is the major factor affecting SST cooling and Chl-a increase, as TCs need more strength to reach the MLD. However, in the northern YBS, which has the shallowest sea basin and MLD, even weak TCs can easily break the MLD and reach the seabed; thus, ocean surface changes are associated mainly with the TC translation speed. The composite results reveal that both the maximum SST cooling center (1.64 °C) and the maximum Chl-a increasing center (0.14 log(mg/m)) are located on the right and behind the TC center, respectively. In addition, TC-induced SST cooling and Chl-a increase were initiated two days prior to TC passage and then reached their maximum values after 1 day. It takes approximately 7-8 days for the Chl-a concentration to recover, but it takes a much longer time (>15 days) for the SST to recover.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106444DOI Listing

Publication Analysis

Top Keywords

sst cooling
16
chl-a increase
12
translation speed
12
competition ocean
8
ocean thermal
8
thermal structure
8
characteristics modulates
8
modulates ocean
8
environmental responses
8
ocean surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!