Zeolite catalysts and adsorbents have been an integral part of many commercial processes and are projected to play a significant role in emerging technologies to address the changing energy and environmental landscapes. The ability to rationally design zeolites with tailored properties relies on a fundamental understanding of crystallization pathways to strategically manipulate processes of nucleation and growth. The complexity of zeolite growth media engenders a diversity of crystallization mechanisms that can manifest at different synthesis stages. In this review, we discuss the current understanding of classical and nonclassical pathways associated with the formation of (alumino)silicate zeolites. We begin with a brief overview of zeolite history and seminal advancements, followed by a comprehensive discussion of different classes of zeolite precursors with respect to their methods of assembly and physicochemical properties. The following two sections provide detailed discussions of nucleation and growth pathways wherein we emphasize general trends and highlight specific observations for select zeolite framework types. We then close with conclusions and future outlook to summarize key hypotheses, current knowledge gaps, and potential opportunities to guide zeolite synthesis toward a more exact science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.3c00801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!