Integrating tertiary lymphoid structure-associated genes into computational models to evaluate prognostication and immune infiltration in pancreatic cancer.

J Leukoc Biol

Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, China.

Published: September 2024

Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor response to all therapeutic modalities and dismal prognosis. The presence of tertiary lymphoid structures (TLSs) in various solid cancers is of crucial prognostic significance, highlighting the intricate interplay between the tumor microenvironment and immune cells aggregation. However, the extent to which TLSs and immune status affect PDAC prognosis remains incompletely understood. Here, we sought to unveil the unique properties of TLSs in PDAC by leveraging both single-cell and bulk transcriptomics, culminating in a risk model that predicts clinical outcomes. We used TLS scores based on a 12-gene (CCL2, CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11, and CXCL13) and 9-gene (PTGDS, RBP5, EIF1AY, CETP, SKAP1, LAT, CCR6, CD1D, and CD79B) signature, respectively, and examined their distribution in cell clusters of single-cell data from PDAC samples. The markers involved in these clusters were selected to develop a prognostic model using The Cancer Genome Atlas Program database as the training cohort and Gene Expression Omnibus database as the validation cohort. Further, we compared the immune infiltration, drug sensitivity, and enriched and differentially expressed genes between the high- and low-risk groups in our model. Therefore, we established a risk model that has significant implications for the prognostic assessment of PADC patients with remarkable differences in immune infiltration and chemosensitivity between the low- and high-risk groups. This paradigm established by TLS-related cell marker genes provides a prognostic prediction and a panel of novel therapeutic targets for exploring potential immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jleuko/qiae067DOI Listing

Publication Analysis

Top Keywords

immune infiltration
12
tertiary lymphoid
8
risk model
8
immune
5
integrating tertiary
4
lymphoid structure-associated
4
structure-associated genes
4
genes computational
4
computational models
4
models evaluate
4

Similar Publications

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma.

Nat Commun

December 2024

Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.

View Article and Find Full Text PDF

Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4 T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!