This study was performed to assess the impacts of introducing diets containing different levels of soybean meal (SBM) to sterlet sturgeon (Acipenser ruthenus) larvae on growth performance, body composition, and molecular responses in the juvenile stage. The sterlet larvae (57.68 ± 0.66 mg) were weaned onto the formulated diets as follows: a control diet containing 60% fishmeal (FM), and three experimental diets with replacement levels of 15% (SBM15), 30% (SBM30), and 45% (SBM45) of FM with SBM. Then, a total of 260 fish (initial weight: 323.33 ± 11.76 mg) were fed the four different diets for 28 days in triplicates (phase 1, nutritional programming, NP). All treatments were then fed with the FM diet in phase 2 (common phase), and in phase 3 (challenge phase), all experimental groups (6.14 ± 0.08 g) were transitioned to SBM45 for 28 days. At the end of phases 1 and 2, growth performance showed no significant differences among the groups (P > 0.05), while significantly improved in SBM45 than the control at the end of phase 3 (P < 0.05). No significant differences were found among the groups in any phases for whole body composition (P > 0.05). Additionally, the total saturated fatty acids were significantly higher in SBM-based diets than FM at the end of phase 3 (P < 0.05). The mRNA of GH, IGF-I was significantly affected by variation of FM replacement level (P < 0.05). The expression level of Ghrelin was up-regulated in fish fed SBM at the end of phase 3 (P < 0.05). Our findings revealed that NP can positively enhance the adaptation of juvenile sterlet sturgeon to 45% SBM when exposed to the same diets at the larval stage. Further research is being carried out to provide valuable insights into the underlying mechanisms of digestive performance for this species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939228PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299203PLOS

Publication Analysis

Top Keywords

sterlet sturgeon
12
growth performance
12
body composition
12
phase 005
12
nutritional programming
8
sturgeon acipenser
8
acipenser ruthenus
8
soybean meal
8
performance body
8
phase
8

Similar Publications

The lateral line system enables fishes and aquatic-stage amphibians to detect local water movement via mechanosensory hair cells in neuromasts, and many species to detect weak electric fields via electroreceptors (modified hair cells) in ampullary organs. Both neuromasts and ampullary organs develop from lateral line placodes, but the molecular mechanisms underpinning ampullary organ formation are understudied relative to neuromasts. This is because the ancestral lineages of zebrafish (teleosts) and (frogs) independently lost electroreception.

View Article and Find Full Text PDF

Periderm fate and independence of tooth formation are conserved across osteichthyans.

Evodevo

October 2024

Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague, Czech Republic.

Article Synopsis
  • Researchers studied the outer layer of skin called periderm in different fish to see how it helps with tooth development.
  • They found that in zebrafish and sturgeon, periderm doesn’t grow far enough to reach where teeth form.
  • This unique way of periderm growing could be important for understanding how different types of fish develop teeth, even if they have different kinds of teeth or none at all.
View Article and Find Full Text PDF

The individual ovarian follicle of sturgeons (Acipenseriformes, Acipenseridae) contains an oocyte surrounded by follicular cells (FCs), basal lamina, and thecal cells. The late stages of the secondary growth of follicles (mid- and advanced vitellogenic) are not fully explained in Acipenseriformes. To explore and discuss the ultrastructure of oocytes, FCs, an egg envelope, and explain how micropylar cells differentiate and the canals of a multiple micropyle are formed, the samples of ovaries of the mature sterlet sturgeon Acipenser ruthenus were examined.

View Article and Find Full Text PDF

The influence of HSP inducers on salinity stress in sterlet sturgeon (Acipenser ruthenus): In vitro study on HSP expression, immune responses, and antioxidant capacity.

Cell Stress Chaperones

August 2024

Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.

Heat shock proteins (HSPs) play a crucial role in antioxidant systems, immune responses, and enzyme activation during stress conditions. Salinity changes can cause stress and energy expenditure in fish, resulting in mortality, especially in fingerlings. The purpose of this study was to examine the relationship between salinity and HSPs in stressed fish by assessing the effects of various HSP inducers (HSPis), including Pro-Tex® (800 mM), amygdalin (80 mM), and a novel synthetic compound derived from pirano piranazole (80 µM), on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) exposed to 13 ‰ salinity (S13).

View Article and Find Full Text PDF

The aim of this study was to analyze the survival and growth of intergeneric ( × L.) sterbel hybrids obtained by fertilizing sterlet eggs with cryopreserved beluga semen. The rate of embryonic development did not differ between sterbel hybrids (experimental groups) and sterlets (control groups), and the hatching period was identical in all groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!