Human Activity Recognition (HAR) has recently attracted widespread attention, with the effective application of this technology helping people in areas such as healthcare, smart homes, and gait analysis. Deep learning methods have shown remarkable performance in HAR. A pivotal challenge is the trade-off between recognition accuracy and computational efficiency, especially in resource-constrained mobile devices. This challenge necessitates the development of models that enhance feature representation capabilities without imposing additional computational burdens. Addressing this, we introduce a novel HAR model leveraging deep learning, ingeniously designed to navigate the accuracy-efficiency trade-off. The model comprises two innovative modules: 1) Pyramid Multi-scale Convolutional Network (PMCN), which is designed with a symmetric structure and is capable of obtaining a rich receptive field at a finer level through its multiscale representation capability; 2) Cross-Attention Mechanism, which establishes interrelationships among sensor dimensions, temporal dimensions, and channel dimensions, and effectively enhances useful information while suppressing irrelevant data. The proposed model is rigorously evaluated across four diverse datasets: UCI, WISDM, PAMAP2, and OPPORTUNITY. Additional ablation and comparative studies are conducted to comprehensively assess the performance of the model. Experimental results demonstrate that the proposed model achieves superior activity recognition accuracy while maintaining low computational overhead.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3377353DOI Listing

Publication Analysis

Top Keywords

activity recognition
12
pyramid multi-scale
8
human activity
8
deep learning
8
recognition accuracy
8
proposed model
8
model
5
cross-attention enhanced
4
enhanced pyramid
4
multi-scale networks
4

Similar Publications

The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.

View Article and Find Full Text PDF

Background: Cognitive training (CT) has been one of the important non-pharmaceutical interventions that could delay cognitive decline. Currently, no definite CT methods are available. Furthermore, little attention has been paid to the effect of CT on mood and instrumental activities of daily living (IADL).

View Article and Find Full Text PDF

Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM.

View Article and Find Full Text PDF

Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR , a previously proposed candidate for the resistance gene. Though recent studies have identified as the true gene, Yr10 remains an important NLR in understanding NLR-mediated immunity in wheat.

View Article and Find Full Text PDF

Synthesis and Evaluation of Cytotoxic Activity of RuCp(II) Complexes Bearing (Iso)nicotinic Acid Based Ligands.

Pharmaceuticals (Basel)

January 2025

Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

Background/objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments.

Methods: Building on the auspicious results obtained for [Ru(η-CH)(PPh)(bipy)][CFSO] (TM34), our focus has shifted to examining the effects of incorporating bioactive ligands into the TM34 framework, particularly within the cyclopentadienyl ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!