Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recognizing drug-target interactions (DTI) stands as a pivotal element in the expansive field of drug discovery. Traditional biological wet experiments, although valuable, are time-consuming and costly as methods. Recently, computational methods grounded in network learning have demonstrated great advantages by effective topological feature extraction and attracted extensive research attention. However, most existing network-based learning methods only consider the low-order binary correlation between individual drug and target, neglecting the potential higher-order correlation information derived from multiple drugs and targets. High-order information, as an essential component, exhibits complementarity with low-order information. Hence, the incorporation of higher-order associations between drugs and targets, while adequately integrating them with the existing lower-order information, could potentially yield substantial breakthroughs in predicting drug-target interactions. We propose a novel dual channels network-based learning model CHL-DTI that converges high-order information from hypergraphs and low-order information from ordinary graph for drug-target interaction prediction. The convergence of high-low order information in CHL-DTI is manifested in two key aspects. First, during the feature extraction stage, the model integrates both high-level semantic information and low-level topological information by combining hypergraphs and ordinary graph. Second, CHL-DTI fully fuse the innovative introduced drug-protein pairs (DPP) hypergraph network structure with ordinary topological network structure information. Extensive experimentation conducted on three public datasets showcases the superior performance of CHL-DTI in DTI prediction tasks when compared to SOTA methods. The source code of CHL-DTI is available at https://github.com/UPCLyy/CHL-DTI .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12539-024-00608-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!