Transient Interfacial Pattern Formation in Block Copolymer Thin Films via Sequential Thermal and Solvent Immersion Annealing.

ACS Appl Mater Interfaces

William A. Brookshire, Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States.

Published: March 2024

A variety of structures encountered in nature only arise in materials under highly nonequilibrium conditions, suggesting to us that the scope for creating new functional block copolymer (BCP) structures might be significantly enlarged by embracing complex processing histories that allow for the fabrication of structures quite unlike those created under "near-equilibrium" conditions. The present work examines the creation of polymer film structures in which highly nonequilibrium processing conditions allow for the creation of entirely new types of transient BCP morphologies achieved by transitioning between different ordered states. Most previous studies of BCP materials have emphasized ordering them from their disordered state obtained from a solution film casting process, followed by a slow thermal annealing (TA) process at elevated temperatures normally well above room temperature. We have previously shown that achieving the equilibrium TA state can be accelerated by a direct solvent immersion annealing (DIA) preordering step that creates nascent ordered microstructures, followed by TA. In the present work, we examine the reverse nonequilibrium sequential processing in which we first thermally anneal the BCP film to different levels of partial (lamellar) order and then subject it to DIA to swell the lamellae. This sequential processing rapidly leads to a swelling-induced wrinkle pattern that initially grows with immersion time and can be quenched by solvent evaporation into its corresponding glassy state morphology. The article demonstrates the formation of wrinkling "defect" patterns in entangled BCP films by this sequential annealing that does not form under ordinary TA conditions. At long DIA times, these highly "defective" film structures evolve in favor of the equilibrium morphology of parallel lamellae observed with DIA alone. In conjunction with our previous study of sequential DIA + TA, the present TA + DIA study demonstrates that switching the order of these processing methods for block copolymer films gives the same final state morphology in the limit of long time as any one method alone, but with drastically different intermediate transient state morphologies. These transient morphologies could have many applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00068DOI Listing

Publication Analysis

Top Keywords

block copolymer
12
films sequential
8
solvent immersion
8
immersion annealing
8
highly nonequilibrium
8
film structures
8
sequential processing
8
state morphology
8
dia
6
sequential
5

Similar Publications

This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.

View Article and Find Full Text PDF

A Novel Polytetrahydrofuran-Based Shape Memory Polyurethane Enhanced by Polyglycolide-Block-Polytetrahydrofuran-Block-Polyglycolide Copolymer.

Polymers (Basel)

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.

View Article and Find Full Text PDF

Well-defined amorphous/semi-crystalline statistical copolymers of n-dodecyl isocyanate, DDIC, and allyl isocyanate, ALIC, were synthesized via coordination polymerization using the chiral half-titanocene complex CpTiCl(O-(S)-2-Bu) as an initiator. In the frame of the terminal model, the monomer reactivity ratios of the statistical copolymers were calculated using both well-known linear graphical methods and the computer program COPOINT. The molecular and structural characteristics of the copolymers were also calculated.

View Article and Find Full Text PDF

Anion exchange membranes (AEMs) as a kind of important functional material are widely used in fuel cells. However, synthetic AEMs generally suffer from low conductivity, poor alkaline stability, and poor dimensional stability. Constructing efficient ion transport channels is widely regarded as one of the most effective strategies for developing AEMs with high conductivity and low swelling ratio.

View Article and Find Full Text PDF

Rhodixan A1 is the trade name for -ethyl -(1-methoxycarbonylethyl)dithiocarbonate, a RAFT/MADIX agent used by Syensqo to produce block copolymer additives for aqueous formulations on an industrial scale. Chain transfer coefficients to Rhodixan A1 determined for 25 different styrenic, acrylate, and acrylamide monomers were relatively low (0.6 < C < 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!