Inorganic cesium lead halide perovskites have evoked wide popularity because of their excellent optoelectronic properties, high photoluminescence (PL) quantum yield (PLQY), and narrowband emission. Here, cesium lead bromide (CsPbBr ) quantum dots (QDs) were synthesized via the ligand-assisted re-precipitation method. Post-synthesis treatment of CsPbBr QDs using antimony tribromide improved the PL stability and optoelectronic properties of the QDs. In addition, the PLQY of the post-treated sample was enhanced to 91% via post-treatment, and the luminescence observed was maintained for 8 days. The post-synthesis treatment ensured defect passivation and improved the stability of CsPbBr perovskite QDs. High-resolution transmission electron microscopy revealed the presence of more ordered, uniform-sized CsPbBr QDs after post-synthesis treatment, and the uniformity of the sample improved as the day passed. The formation of a mixed crystal phase was observed from X-ray diffraction in both as-synthesized, as well as post-treated QDs samples with the possibility of a polycrystalline nature in the post-treated CsPbBr QDs as per the selected area electron diffraction pattern. The X-ray photoelectron spectroscopy spectra confirmed the presence of antimony and the possibility of defect passivation in the post-treated samples. These QDs can act as potential candidates in various optoelectronic applications such as photodetectors and light-emitting diodes due to their high PLQY and longer lifetime.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.4706DOI Listing

Publication Analysis

Top Keywords

defect passivation
12
post-synthesis treatment
12
cspbbr qds
12
post-treated cspbbr
8
cspbbr quantum
8
quantum dots
8
cesium lead
8
optoelectronic properties
8
qds
8
improved stability
8

Similar Publications

Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.

View Article and Find Full Text PDF

Multi-Functional Semiconductor Polymer Doped Wide Bandgap Layer for All-Perovskite Solar Cells with High Efficiency and Long Durability.

Small

December 2024

Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

The study presents a multi-functional and semiconductor polymer poly[bis(3-hexylthiophen-2-yl)thieno[3,4-c]pyrrole-4,6-dione] (PBDTTPD) doping strategy that significantly enhanced the performance of the two-terminal all-perovskite tandem perovskite solar cells (T-PSCs). An optimized power conversion efficiency (PCE) of 26.87% has been achieved.

View Article and Find Full Text PDF

Ultrathin, Friendly Environmental, and Flexible CsPb(Cl/Br)-Silica Composite Film for Blue-Light-Emitting Diodes.

Langmuir

December 2024

Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.

Due to intrinsic defects in blue-light-emitting perovskite materials, the charge carriers are prone to being trapped by the trap states. Therefore, the preparation of efficient blue-light-emitting perovskite materials remains a significant challenge. Herein, CsPb(Cl/Br) nanocrystal (NCs)@SiO structures were fabricated through hydrolyzing (3-aminopropyl)-triethoxysilane (APTS).

View Article and Find Full Text PDF

The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.

View Article and Find Full Text PDF

Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!