Transformer-based models have revolutionized single cell RNA-seq (scRNA-seq) data analysis. However, their applicability is challenged by the complexity and scale of single-cell multi-omics data. Here a novel single-cell multi-modal/multi-task transformer (scmFormer) is proposed to fill up the existing blank of integrating single-cell proteomics with other omics data. Through systematic benchmarking, it is demonstrated that scmFormer excels in integrating large-scale single-cell multimodal data and heterogeneous multi-batch paired multi-omics data, while preserving shared information across batchs and distinct biological information. scmFormer achieves 54.5% higher average F1 score compared to the second method in transferring cell-type labels from single-cell transcriptomics to proteomics data. Using COVID-19 datasets, it is presented that scmFormer successfully integrates over 1.48 million cells on a personal computer. Moreover, it is also proved that scmFormer performs better than existing methods on generating the unmeasured modality and is well-suited for spatial multi-omic data. Thus, scmFormer is a powerful and comprehensive tool for analyzing single-cell multi-omics data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109621 | PMC |
http://dx.doi.org/10.1002/advs.202307835 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!