A new method is proposed to measure the linear coefficient of thermal expansion (CTE) of solid metals and ceramics of micron-sized dimensions. This approach uses a focused ion beam (FIB) to extract and transfer a slab of the sample, typically (15-20) ×10 × (3-5) µm onto a Micro-Electro-Mechanical Systems (MEMS) in situ heating holder inside a scanning electron microscope (SEM). CTE is thereafter calculated by image correlating the change of length (ΔL) between the fiducial marks on the slab as a function of temperature, taking advantage of the temperature calibration of the MEMS heating holder and nanometre resolution of the scanning electron microscope. The CTE results are validated to be consistent with standard copper and silicon. We further demonstrate the method on a graphene platelet reinforced copper composite and a graphite filler phase isolated from a bulk sample, these represent materials that cannot be practically synthesised or isolated at the macro-scale. Errors associated with the measurement are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jmi.13290 | DOI Listing |
Nanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
The hot carrier multi-junction solar cell (HCMJC) is an advanced-concept solar cell with a theoretical efficiency greater than 65%. It combines the advantages of hot carrier solar cells and multi-junction solar cells with higher power conversion efficiency (PCE). The thermalization coefficient () has been shown to slow down by an order of magnitude in low-dimensional structures, which will significantly improve PCE.
View Article and Find Full Text PDFCrown ether is widely used in water purification because of its ring structure and good selective adsorption of specific heavy metals. However, its high cost and difficulty in recycling limit the purification of heavy metals in water. The anisotropic [2,4]-dibenzo-18-crown-6-modified bamboo pulp aerogel (DB18C6/PA) is successfully synthesized by microwave irradiation and directional freezing technology.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6102, Australia.
Accurate Rayleigh and Raman scattering cross sections, tensor components, depolarization ratios, and reversal coefficients for all rovibrational transitions within the X1Σg+ ground electronic state of H2 have been calculated. Raman spectra have been generated using these data. A method for calculating Raman scattering cross sections is formulated that is valid below the ionization threshold and in the region containing resonances, which explicitly accounts for all bound and dissociative vibrational levels of the bound intermediate electronic states and approximately accounts for the ionization continuum.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
Achieving high shielding effectiveness in electromagnetic shielding materials relies heavily on high conductivity, yet simultaneously enhancing the absorption loss remains a persistent challenge. Consequently, the study successfully creates efficient electromagnetic shielding composite films with a unique grape-like bunch structure of hollow nanosilver (HCAF) through layer-by-layer assembly. The utilization of poly(dopamine) (PDA) to anchor nanosilver granules (AgNPs) onto cellulose nanofibers (CNF) results in the formation of CNF@PDA@AgNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!