Smart Janus textiles for biofluid management in wearable applications.

iScience

Institute for Advanced Study, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.

Published: March 2024

Janus textiles with asymmetric wettability have shown great potential in wearable applications due to their ability to manage biofluids efficiently. This review summarizes recent advances in smart Janus textiles for biofluid control and monitoring, focusing on wearable technologies. We first introduce the design configurations and fabrication approaches of Janus textiles, including asymmetric generation and asymmetric decoration strategies. We then highlight their diverse wearable applications spanning personal thermal management textiles, sweat sensors, hemostatic wound dressings, and protective equipment. These textiles offer innovative solutions for directional sweat transport, enhancing cooling and humidity control, and providing antibacterial properties. Finally, we discuss current limitations in durability, biocompatibility, and manufacturing scalability, alongside emerging opportunities in the field of smart Janus textiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933548PMC
http://dx.doi.org/10.1016/j.isci.2024.109318DOI Listing

Publication Analysis

Top Keywords

janus textiles
20
smart janus
12
wearable applications
12
textiles biofluid
8
textiles
7
biofluid management
4
wearable
4
management wearable
4
janus
4
applications janus
4

Similar Publications

One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China. Electronic address:

It remains a challenge for a simple and scalable method to fabricate ultrathin porous Janus membranes for stretchable on-skin electronics. Here, we propose a one-step droplet spreading phase separation strategy to prepare an ultrathin and easily collected Janus thermoplastic polyurethane (TPU) membrane within seconds. The metal-ion solvation structure mitigated migration kinetics to delay TPU solution demixing, promoting the further penetration of the coagulating solvent.

View Article and Find Full Text PDF

Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties.

Small

January 2025

College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.

Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.

View Article and Find Full Text PDF

Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Article Synopsis
  • Designed a new type of catalyst using a unique Lous-leaf-inspired nanoarchitecture that prevents contamination and improves efficiency in disinfection processes.
  • Utilized hydrophilic polydopamine to help create a special coating on cotton fabric that interacts well with contaminants and boosts antibacterial action, all without needing extra chemicals.
  • Achieved over 99% antibacterial effectiveness against E. coli even after multiple washes, demonstrating strong resistance and the ability to tackle common challenges in catalytic reactions.
View Article and Find Full Text PDF

Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release.

Int J Biol Macromol

December 2024

State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China. Electronic address:

Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".

View Article and Find Full Text PDF

Glucose-Activated Janus Wound Dressing for Enhanced Management of Infected and Exudative Diabetic Wounds.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China.

Article Synopsis
  • Diabetic wounds present complex challenges due to factors like high glucose levels and infections, leading to increased demand for innovative wound dressings in biomedical engineering.
  • A new Janus wound dressing has been developed, combining a hydrophobic antimicrobial layer with a hydrophilic sponge, which helps manage wound exudate and enhances healing.
  • In lab tests, this dressing improved healing rates by 54% within three days and effectively reduced methicillin-resistant (MRSA) infections, highlighting its potential for treating chronic diabetic wounds.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!