The digestive organs of terrestrial isopods harbour bacteria of the recently proposed mollicute family . The only complete genome available so far for is that of ' Hepatoplasma crinochetorum'. The scarcity of genome sequences has hampered our understanding of the symbiotic relationship between isopods and mollicutes. Here, we present four complete metagenome-assembled genomes (MAGs) of uncultured members identified from shotgun sequencing data of isopods. We propose genomospecies names for three MAGs that show substantial sequence divergence from any previously known members: ' Tyloplasma litorale' identified from the semiterrestrial isopod , ' Hepatoplasma vulgare' identified from the common pill bug , and ' Hepatoplasma scabrum' identified from the common rough woodlouse . Phylogenomic analysis of 155 mollicutes confirmed that is a sister clade of in the order . The 16S ribosomal RNA gene sequences and phylogenomic analysis showed that ' Tyloplasma litorale' and other semiterrestrial isopod-associated mollicutes represent the placeholder genus 'g_Bg2' in the r214 release of the Genome Taxonomy Database, warranting their assignment to a novel genus. Our analysis also revealed that lack major metabolic pathways but has a likely intact type IIA CRISPR-Cas9 machinery. Although the localization of the members have not been verified microscopically in this study, these genomic characteristics are compatible with the idea that these mollicutes have an ectosymbiotic lifestyle with high nutritional dependence on their host, as has been demonstrated for other members of the family. We could not find evidence that encode polysaccharide-degrading enzymes that aid host digestion. If they are to provide nutritional benefits, it may be through extra-copy nucleases, peptidases, and a patatin-like lipase. Exploration of potential host-symbiont interaction-associated genes revealed large, repetitive open reading frames harbouring beta-sandwich domains, possibly involved with host cell adhesion. Overall, genomic analyses suggest that isopod-mollicute symbiosis is not characterized by carbohydrate degradation, and we speculate on their potential role as defensive symbionts through spatial competition with pathogens to prevent infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928387PMC
http://dx.doi.org/10.1099/acmi.0.000592.v3DOI Listing

Publication Analysis

Top Keywords

metagenome-assembled genomes
8
isopod-mollicute symbiosis
8
tyloplasma litorale'
8
identified common
8
phylogenomic analysis
8
genomes three
4
three provide
4
provide insights
4
insights isopod-mollicute
4
symbiosis digestive
4

Similar Publications

Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.

View Article and Find Full Text PDF

Unlabelled: Fish gut microbial communities are important for the breakdown and energy harvesting of the host diet. Microbes within the fish gut are selected by environmental and evolutionary factors. To understand how fish gut microbial communities are shaped by diet, three tropical fish species (hawkfish, ; yellow tang, ; and triggerfish, ) were fed piscivorous (fish meal pellets), herbivorous (seaweed), and invertivorous (shrimp) diets, respectively.

View Article and Find Full Text PDF

Background: While Gangba sheep being well known for their unique flavour and nutritional value, harsh environmental factors negatively affect their growth and development, leading to poor productivity. The gastrointestinal tract microbiota plays an important role in host nutrient absorption and metabolism. The identification of dynamic changes in the gastrointestinal microbial communities and their functions is an important step towards improving animal production performance and health.

View Article and Find Full Text PDF

The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.

View Article and Find Full Text PDF

Structure and metabolic function of spatiotemporal pit mud microbiome.

Environ Microbiome

January 2025

Luzhou Laojiao Co., Ltd., Luzhou, 646000, China.

Background: Pit mud (PM) hosts diverse microbial communities, which serve as a medium to impart flavor and quality to Baijiu and exhibit long-term tolerance to ethanol and acids, resulting in a unique ecosystem. However, the ecology and metabolic functions of PM remain poorly understood, as many taxa in PM represent largely novel lineages. In this study, we used a combination of metagenomic analysis and chemical derivatization LC-MS analysis to provide a comprehensive overview of microbial community structure, metabolic function, phylogeny, horizontal gene transfer, and the relationship with carboxyl compounds in spatiotemporal PM samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!