In the intricate environment of a cell, many studies seek to discover the location of specific events or objects of interest. Advances in microscopy in recent years have allowed for high detail views of specific areas of cells of interest using correlative light electron microscopy (CLEM). While this powerful technique allows for the correlation of a specific area of fluorescence on a confocal microscope with that same area in an electron microscope, it is most often used to study tagged proteins of interest. This method adapts the correlative method for use with antibody labelling. We have shown that some cellular structures are more sensitive than others to this process and that this can be a useful technique for laboratories where tagged proteins or viruses, or dedicated CLEM instruments are not available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928386PMC
http://dx.doi.org/10.1099/acmi.0.000750.v3DOI Listing

Publication Analysis

Top Keywords

correlative light
8
light electron
8
electron microscopy
8
tagged proteins
8
novel optimized
4
optimized pre-embedding
4
pre-embedding antibody-labelling
4
antibody-labelling correlative
4
microscopy technique
4
technique intricate
4

Similar Publications

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences.

View Article and Find Full Text PDF

Circ-PAN3 facilitates hepatocellular carcinoma growth via sponging miR-153 and upregulating cyclin D1.

Oncol Res

January 2025

Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Circular RNAs (circRNAs) play a pivotal role in the development and advancement of various cancer types. However, the involvement of circ-PAN3 in hepatocellular carcinoma (HCC) is not well understood. To shed light on this, we conducted a comprehensive study through biochemistry, cell biology, molecular biology, and bioinformatics techniques to investigate the role of circ-PAN3 and its associated pathway in the progression of HCC.

View Article and Find Full Text PDF

Objectives: Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of infants, predominantly in female and preterm neonates. Propranolol is the mainstay of treatment for IH. Given the short half-life of propranolol regarding β-adrenergic receptor inhibition as well as its side effects, propranolol is administered to infants 2-3 times daily with 1 mg/kg/dose.

View Article and Find Full Text PDF

Flat Band Generation Through Interlayer Geometric Frustration in Intercalated Transition Metal Dichalcogenides.

Small

January 2025

Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada.

Electronic flat bands can lead to rich many-body quantum phases by quenching the electron's kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moiré superlattices. Here a general approach is proposed to introduce flat bands into widely studied transition metal dichalcogenide (TMD) materials by dilute intercalation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!