To enhance the protective ability of copper crystallizers and extend their service life, this study explores the use of double pulse co-deposition under a sulfamic acid system to create protective coatings such as Co-Ni. The hardness test and friction wear analysis compare Co-Ni, Co-Ni-Ce, and Co-Ni-Ce/TiC coatings, revealing that the Co-Ni-Ce/TiC coating exhibits the most outstanding protective performance. SEM and XRD techniques are employed to characterize the three protective coatings, demonstrating that the incorporation of rare-earth cerium and nanoparticles improves the coating morphology and modifies their crystalline phase structure. Furthermore, cyclic voltammetry tests on the plating solutions of the three protective coatings indicate that the addition of Ce and nanoparticles influences the deposition potentials. The deposition of Co and Ni follows a two-step, two-electron process, while the deposition of Ce follows a one-step, three-electron process. It is observed that the deposition of all three ions is irreversible. To gain further insights into the nucleation mechanism of Ce, a chronoamperometry test is conducted, revealing that the nucleation of Ce is a transient process controlled by diffusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933710PMC
http://dx.doi.org/10.1039/d4ra00896kDOI Listing

Publication Analysis

Top Keywords

protective coatings
12
sulfamic acid
8
acid system
8
three protective
8
coatings
5
protective
5
preparation co-ni-ce/tic
4
co-ni-ce/tic alloy
4
alloy coatings
4
coatings double-pulse
4

Similar Publications

Archaeological coins are considered essential sources of historical documentation. Over time, they are subjected to corrosion processes that gradually alter their appearance, shape, and composition. This study aims to evaluate the effects of the patina and/or protective coating on the corrosion process.

View Article and Find Full Text PDF

The severe contamination of the plasticiser dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilisation. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with FeO-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp.

View Article and Find Full Text PDF

An emodin-mediated multifunctional nanoplatform with augmented sonodynamic and immunoregulation for osteomyelitis therapy.

J Colloid Interface Sci

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032 China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006 China. Electronic address:

Emodin (ED), as a traditional Chinese medicine, possesses a variety of biological activities and is also one of natural sonosensitizer. Whether emodin could react with titanium dioxide to enhance the sonodynamic activity for safely treating osteomyelitis remains to be explored. Hence, an ED-conjugated Mn-doped titanium dioxide (TOM) nanorod array is designed and prepared on titanium to eliminate bacterial infections under ultrasound (US) treatment.

View Article and Find Full Text PDF

S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology.

Q Rev Biophys

January 2025

Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria.

Prokaryotic microorganisms, comprising and , exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution.

View Article and Find Full Text PDF

Interfacial Engineering with a Conjugated Conductive Polymer for a Highly Reversible Zn Anode.

ACS Appl Mater Interfaces

January 2025

Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, China.

For Zn metal batteries, the Zn anode faces several challenges, including Zn dendrites, hydrogen evolution, and corrosion. These issues are closely related to the Zn deposition process at the electrode/electrolyte interface. Herein, we propose interfacial engineering to protect the Zn anode and induce homogeneous deposition using conjugated cyclized polyacrylonitrile (cPAN) polymer nanofibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!