Water pollution is a growing concern for mankind due to its harmful effects on humans, animals and plants. Usually, several pollutants are present in wastewater. For example, dyes and antibiotics are found in wastewater because of their widespread use in factories and hospitals. However, one single technique, either adsorption or photocatalysis, cannot easily remove more than one kind of pollutant, especially by using one single material in water. For this reason, here multifunctional iron(ii,iii) oxide/poly(-isopropylacrylamide--methacrylic acid)/silver-titanium dioxide (FeO/P(NIPAM--MAA)/Ag-TiO) nanocomposites were used to remove a mixture of pollutants from water. Specifically, three types of experiments were performed to evaluate the adsorption capacity and photodegradation activity of the nanocomposites towards the dye basic fuchsin (BF) and the antibiotic ciprofloxacin (CIP), which were added sequentially to the nanocomposites dispersion or were concurrently present as a mixture. The results demonstrated that the nanocomposites could adsorb BF, and subsequently photodegrade CIP under visible-light irradiation, if BF was the first added pollutant. As well, the nanocomposites could first degrade CIP under visible-light irradiation, and then adsorb BF if they were initially put in contact with CIP. Finally, the ability of adsorbing BF and photodegrading CIP was confirmed in the co-presence of the two pollutants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10929593PMC
http://dx.doi.org/10.1039/d3na00931aDOI Listing

Publication Analysis

Top Keywords

pollutants water
8
cip visible-light
8
visible-light irradiation
8
nanocomposites
6
cip
5
multifunctional polymer-based
4
polymer-based nanocomposites
4
nanocomposites synergistic
4
synergistic adsorption
4
adsorption photocatalytic
4

Similar Publications

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Aquatic toxicology, as a result of industrial and agrieqcultural effluences, has become a global concern impacting not only the well-being of aquatic organisms but human health as well. The current study evaluated the impact of four toxic trace elements (TTEs) Cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) in three organs (liver, gills, and muscles) of five fish species viz, Rita rita, Sperata sarwari, Wallago attu, Mastacembelus armatus, and Cirrhinus mrigala collected from right and left banks of Punjnad headworks during winter, spring, and summer. We investigated the accumulation (mg/kg) of these TTEs in fish in addition to the human health risk assessment.

View Article and Find Full Text PDF

Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.

View Article and Find Full Text PDF

The Puna region is distinguished by its extreme environmental conditions and highly valuable mining resources. However, the unregulated management of mine tailings poses a significant threat to the ecological integrity of this region. This study assesses the environmental impacts of mine tailings at La Concordia mine (Salta province, Argentina) and examines the physiological and biochemical adaptations of Parastrephia quadrangularis (Meyen) Cabrera that enable its survival under this extreme conditions.

View Article and Find Full Text PDF

Human health risk assessment by exposure to contaminants from an urban reservoir: a pilot study in the Madin Dam (México).

Environ Monit Assess

January 2025

Laboratory of Aquatic Toxicology, Graduate and Research Section, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/N, Delegación Gustavo A. Madero, Ciudad de México, 07738, México.

Water contamination greatly impacts human health. The Metropolitan Area of the Valley of Mexico (MAVM) is one of the most densely inhabited and polluted places globally, with a significant problem being the rising water demand. The research aims to assess the impact of metals such as iron, aluminum, lead, cadmium, and total chromium, among others, in the water of the Madin Dam, a key reservoir in the area's water supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!