A simple method for floating graphene oxide films facilitates nanoscale investigations of ion and water adsorption.

RSC Adv

Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA https://www.anl.gov/profile/ahmet-uysal.

Published: February 2024

Graphene oxide (GO) is a promising material for separations. Nanoscale GO thin films at the air/water interface are excellent experimental models to understand molecular-scale interactions of ions and water with GO. However, the characteristics of GO, such as functional groups and flake size, also affect the thin film properties making it difficult to make systematic studies with GO thin films. This paper reports a simple, reliable, and quick method of preparing ultra-thin GO films, irrespective of their origin, and demonstrates the new opportunities possible with the utilization of this method. The total amount of GO used to form the thin film is significantly less compared to previous examples in the literature, minimizing the dissolved GO in the subphase. X-ray reflectivity (XR) studies show that the majority of the GO film has 1.5 nm thickness over a macroscopic area (∼100 cm) with very small roughness. Sum frequency generation (SFG) spectroscopy measurements show that HO and DO interact differently with GO films, a property that was not observed before. SFG data show that functional groups vary significantly between different commercially available GO samples. The differences are also characterized with XR at high resolution. X-ray fluorescence near total reflection (XFNTR) measurements show that these differences strongly affect ion adsorption and interfacial water behavior near GO, which are vital properties in separation applications. The results pave the way for future studies to elucidate the complex separation mechanisms with GO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935668PMC
http://dx.doi.org/10.1039/d3ra07254aDOI Listing

Publication Analysis

Top Keywords

graphene oxide
8
thin films
8
functional groups
8
thin film
8
films
5
simple method
4
method floating
4
floating graphene
4
oxide films
4
films facilitates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!