AI-enabled synthetic biology has tremendous potential but also significantly increases biorisks and brings about a new set of dual use concerns. The picture is complicated given the vast innovations envisioned to emerge by combining emerging technologies, as AI-enabled synthetic biology potentially scales up bioengineering into industrial biomanufacturing. However, the literature review indicates that goals such as maintaining a reasonable scope for innovation, or more ambitiously to foster a huge bioeconomy do not necessarily contrast with biosafety, but need to go hand in hand. This paper presents a literature review of the issues and describes emerging frameworks for policy and practice that transverse the options of command-and-control, stewardship, bottom-up, and laissez-faire governance. How to achieve early warning systems that enable prevention and mitigation of future AI-enabled biohazards from the lab, from deliberate misuse, or from the public realm, will constantly need to evolve, and adaptive, interactive approaches should emerge. Although biorisk is subject to an established governance regime, and scientists generally adhere to biosafety protocols, even experimental, but legitimate use by scientists could lead to unexpected developments. Recent advances in chatbots enabled by generative AI have revived fears that advanced biological insight can more easily get into the hands of malignant individuals or organizations. Given these sets of issues, society needs to rethink how AI-enabled synthetic biology should be governed. The suggested way to visualize the challenge at hand is whack-a-mole governance, although the emerging solutions are perhaps not so different either.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10933118 | PMC |
http://dx.doi.org/10.3389/fbioe.2024.1359768 | DOI Listing |
Pharm Res
January 2025
Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
Purpose: The purpose of this study is to present a correlative microscopy-tomography approach in conjunction with machine learning-based image segmentation techniques, with the goal of enabling quantitative structural and compositional elucidation of real-world pharmaceutical tablets.
Methods: Specifically, the approach involves three sequential steps: 1) user-oriented tablet constituent identification and characterization using correlative mosaic field-of-view SEM and energy dispersive X-ray spectroscopy techniques, 2) phase contrast synchrotron X-ray micro-computed tomography (SyncCT) characterization of a large, representative volume of the tablet, and 3) constituent segmentation and quantification of the imaging data through user-guided, iterative supervised machine learning and deep learning.
Results: This approach was implemented on a real-world tablet containing 15% API and multiple common excipients.
Sensors (Basel)
November 2024
Interdisciplinary Institute, University of Aberdeen, Aberdeen AB24 3FX, UK.
The agri-food sector is undergoing a comprehensive transformation as it transitions towards net zero. To achieve this, fundamental changes and innovations are required, including changes in how food is produced and delivered to customers, new technologies, data and physical infrastructures, and algorithmic advancements. In this paper, we explore the opportunities and challenges of deploying AI-based data infrastructures for sustainability in the agri-food sector by focusing on two case studies: soft-fruit production and brewery operations.
View Article and Find Full Text PDFACS Synth Biol
September 2024
University of Oxford, Department of Engineering Science, OX1 3PJ Oxford, U.K.
Mathematical modeling is indispensable in synthetic biology but remains underutilized. Tackling problems, from optimizing gene networks to simulating intracellular dynamics, can be facilitated by the ever-growing body of modeling approaches, be they mechanistic, stochastic, data-driven, or AI-enabled. Thanks to progress in the AI community, robust frameworks have emerged to enable researchers to access complex computational hardware and compilation.
View Article and Find Full Text PDFJ Microbiol Methods
September 2024
Endoscopy Department, University Hospitals of Leicester NHS Trust. Leicester, United Kingdom.
Vaccine development stands as a cornerstone of public health efforts, pivotal in curbing infectious diseases and reducing global morbidity and mortality. However, traditional vaccine development methods are often time-consuming, costly, and inefficient. The advent of artificial intelligence (AI) has ushered in a new era in vaccine design, offering unprecedented opportunities to expedite the process.
View Article and Find Full Text PDFBiotechnol Adv
September 2024
School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA. Electronic address:
Microbial cell factories (MCFs) have been leveraged to construct sustainable platforms for value-added compound production. To optimize metabolism and reach optimal productivity, synthetic biology has developed various genetic devices to engineer microbial systems by gene editing, high-throughput protein engineering, and dynamic regulation. However, current synthetic biology methodologies still rely heavily on manual design, laborious testing, and exhaustive analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!