Endoscopy, a widely used medical procedure for examining the gastrointestinal (GI) tract to detect potential disorders, poses challenges in manual diagnosis due to non-specific symptoms and difficulties in accessing affected areas. While supervised machine learning models have proven effective in assisting clinical diagnosis of GI disorders, the scarcity of image-label pairs created by medical experts limits their availability. To address these limitations, we propose a curriculum self-supervised learning framework inspired by human curriculum learning. Our approach leverages the HyperKvasir dataset, which comprises 100k unlabeled GI images for pre-training and 10k labeled GI images for fine-tuning. By adopting our proposed method, we achieved an impressive top-1 accuracy of 88.92% and an F1 score of 73.39%. This represents a 2.1% increase over vanilla SimSiam for the top-1 accuracy and a 1.9% increase for the F1 score. The combination of self-supervised learning and a curriculum-based approach demonstrates the efficacy of our framework in advancing the diagnosis of GI disorders. Our study highlights the potential of curriculum self-supervised learning in utilizing unlabeled GI tract images to improve the diagnosis of GI disorders, paving the way for more accurate and efficient diagnosis in GI endoscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937990 | PMC |
http://dx.doi.org/10.1038/s41598-024-53955-8 | DOI Listing |
Biol Imaging
November 2024
IBENS, Ecole Normale Supérieure PSL, Paris, 75005, France.
Self-supervised representation learning (SSRL) in computer vision relies heavily on simple image transformations such as random rotation, crops, or illumination to learn meaningful and invariant features. Despite acknowledged importance, there is a lack of comprehensive exploration of the impact of transformation choice in the literature. Our study delves into this relationship, specifically focusing on microscopy imaging with subtle cell phenotype differences.
View Article and Find Full Text PDFPhys Med Biol
January 2025
The Division of Imaging Sciences and Biomedical Engineering, King's College London, 5th Floor Becket House, London, SE1 7EH, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Multiplexed positron emission tomography (mPET) imaging allows simultaneous observation of physiological and pathological information from multiple tracers in a single PET scan. Although supervised deep learning has demonstrated superior performance in mPET image separation compared to purely model-based methods, acquiring large amounts of paired single-tracer data and multi-tracer data for training poses a practical challenge and needs extended scan durations for patients. In addition, the generalisation ability of the supervised learning framework is a concern, as the patient being scanned and their tracer kinetics may potentially fall outside the training distribution.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
Advancements in Raman light sheet microscopy have provided a powerful, non-invasive, marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids. By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence detection, this modality captures complementary spatial and molecular data, critical for biomedical research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial resolution, which impede the visualization of fine subcellular structures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
In this study, we propose a novel framework for time-series representation learning that integrates a learnable masking-augmentation strategy into a contrastive learning framework. Time-series data pose challenges due to their temporal dependencies and feature-extraction complexities. To address these challenges, we introduce a masking-based reconstruction approach within a contrastive learning context, aiming to enhance the model's ability to learn discriminative temporal features.
View Article and Find Full Text PDFLife (Basel)
November 2024
Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea.
Cervical cancer is a significant health challenge, yet it can be effectively prevented through early detection. Cytology-based screening is critical for identifying cancerous and precancerous lesions; however, the process is labor-intensive and reliant on trained experts to scan through hundreds of thousands of mostly normal cells. To address these challenges, we propose a novel distribution-augmented approach using contrastive self-supervised learning for detecting abnormal squamous cervical cells from cytological images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!