Objective: To demonstrate the clinical advantages of a deep-learning image reconstruction (DLIR) in low-dose dual-energy computed tomography enterography (DECTE) by comparing images with standard-dose adaptive iterative reconstruction-Veo (ASIR-V) images.

Methods: In this Institutional review board approved prospective study, 86 participants who underwent DECTE were enrolled. The early-enteric phase scan was performed using standard-dose (noise index: 8) and images were reconstructed at 5 mm and 1.25 mm slice thickness with ASIR-V at a level of 40% (ASIR-V40%). The late-enteric phase scan used low-dose (noise index: 12) and images were reconstructed at 1.25 mm slice thickness with ASIR-V40%, and DLIR at medium (DLIR-M) and high (DLIR-H). The 70 keV monochromatic images were used for image comparison and analysis. For objective assessment, image noise, artifact index, SNR and CNR were measured. For subjective assessment, subjective noise, image contrast, bowel wall sharpness, mesenteric vessel clarity, and small structure visibility were scored by two radiologists blindly. Radiation dose was compared between the early- and late-enteric phases.

Results: Radiation dose was reduced by 50% in the late-enteric phase [(6.31 ± 1.67) mSv] compared with the early-enteric phase [(3.01 ± 1.09) mSv]. For the 1.25 mm images, DLIR-M and DLIR-H significantly improved both objective and subjective image quality compared to those with ASIR-V40%. The low-dose 1.25 mm DLIR-H images had similar image noise, SNR, CNR values as the standard-dose 5 mm ASIR-V40% images, but significantly higher scores in image contrast [5(5-5), P < 0.05], bowel wall sharpness [5(5-5), P < 0.05], mesenteric vessel clarity [5(5-5), P < 0.05] and small structure visibility [5(5-5), P < 0.05].

Conclusions: DLIR significantly reduces image noise at the same slice thickness, but significantly improves spatial resolution and lesion conspicuity with thinner slice thickness in DECTE, compared to conventional ASIR-V40% 5 mm images, all while providing 50% radiation dose reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00261-024-04221-yDOI Listing

Publication Analysis

Top Keywords

image quality
8
low-dose dual-energy
8
dual-energy computed
8
computed tomography
8
tomography enterography
8
image
8
deep-learning image
8
image reconstruction
8
early-enteric phase
8
phase scan
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!