Computational tools are revolutionizing our understanding and prediction of chemical reactivity by combining traditional data analysis techniques with new predictive models. These tools extract additional value from the reaction data , but to effectively convert this value into actionable knowledge, domain specialists need to interact easily with the computer-generated output. In this application note, we demonstrate the capabilities of the open-source Python toolkit LinChemIn, which simplifies the manipulation of reaction networks and provides advanced functionality for working with synthetic routes. LinChemIn ensures chemical consistency when merging, editing, mining, and analyzing reaction networks. Its flexible input interface can process routes from various sources, including predictive models and expert input. The toolkit also efficiently extracts individual routes from the combined synthetic tree, identifying alternative paths and reaction combinations. By reducing the operational barrier to accessing and analyzing synthetic routes from multiple sources, LinChemIn facilitates a constructive interplay between artificial intelligence and human expertise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c01819 | DOI Listing |
Nanoscale
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India.
The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe is one such extremely promising solar energy material.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Kalyani, Nadia 741 246, West Bengal, India.
The first asymmetric total synthesis of the tetraterpenoid (+)-7,7'-bistaxodione () via a unique late-stage electrochemical oxidative dimerization of a diterpenoid quinone methide tumor Inhibitor (+)-taxodione () has been described. The naturally occurring monomer was synthesized from aromatic abietane diterpenoid, ferruginol (1e) . Further, an efficient convergent synthetic route toward the naturally occurring aromatic abietane terpenoids has been shown via a Lewis acid-mediated diastereoselective cationic epoxy-ene cyclization.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
Light-driven CO biovalorization offers a promising route for coupling carbon mitigation with petrochemical replacement. Synthetic phototrophic communities that mimic lichens can reduce the metabolic burden with improved CO utilization. However, inefficient channeling of carbon and energy between species seriously hinders the collaborative CO-to-molecule route.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
In this study, employing a simple anion exchange strategy and straightforward three-step synthetic route, a pair of promising nitrogen-rich heterocyclic cation and oxygen-rich anion were assembled together to generate two novel dinitramide energetic salts, both of which exhibit prominent detonation performance comparable to benchmark explosive RDX while possessing significantly lower mechanical sensitivity than RDX, thereby highlighting them as promising candidates for advanced secondary explosives. This work has directly led to a practical protocol for the design of chloride-free environmentally friendly IEMs, and accelerates the development of organic explosives with high-energy and low-sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!