The low cost and high efficiency of microwave-assisted regeneration render it a viable alternative to conventional regeneration methods. To enhance the regeneration performance, we developed a coupled electromagnetic, heat, and mass transfer model to investigate the heat and mass transfer mechanisms of activated carbon during microwave-assisted regeneration. Simulation results demonstrated that the toluene desorption process is governed by temperature distribution. Changing the input power and flow rate can promote the intensity of hot spots and adjust their distribution, respectively, thereby accelerating toluene desorption, inhibiting readsorption, and promoting regeneration efficiency. Ultimately, controlling the input power and flow rate can flexibly adjust toluene emissions to satisfy the processing demands of desorbed toluene. Taken together, this study provides a comprehensive understanding of the heat and mass transfer mechanisms of microwave-assisted regeneration and insights into adsorbent regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.118671DOI Listing

Publication Analysis

Top Keywords

heat mass
16
mass transfer
16
toluene desorption
12
microwave-assisted regeneration
12
regeneration
8
transfer mechanisms
8
input power
8
power flow
8
flow rate
8
toluene
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!