The mesenchymal subtype of glioblastoma (GBM) cells characterized by aggressive invasion and therapeutic resistance is thought to be dependent on cell-intrinsic alteration and extrinsic cellular crosstalk. Tumor-associated macrophages (TAMs) are pivotal in tumor progression, chemo-resistance, angiogenesis, and stemness maintenance. However, the impact of TAMs on the shifts in glioma stem cells (GSCs) states remains largely uncovered. Herein, we showed that the triggering receptor expressed on myeloid cells-1 (TREM1) preferentially expressed by M2-like TAMs and induced GSCs into mesenchymal-like states by modulating the secretion of TGFβ2, which activated the TGFβR/SMAD2/3 signaling in GSCs. Furthermore, we demonstrated that TREM1 was transcriptionally regulated by HIF1a under the hypoxic environment and thus promoted an immunosuppressive type of TAMs via activating the TLR2/AKT/mTOR/c-MYC axis. Collectively, this study reveals that cellular communication between TAMs and GSCs through the TREM1-mediated TGFβ2/TGFβR axis is involved in the mesenchymal-like transitions of GSCs. Our study provides valuable insights into the regulatory mechanisms between the tumor immune microenvironment and the malignant characteristics of GBM, which can lead to potential novel strategies targeting TAMs for tumor control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2024.216801 | DOI Listing |
iScience
December 2024
Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands.
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels.
View Article and Find Full Text PDFTheranostics
December 2024
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China.
Acta Neuropathol
November 2024
Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
Cancer-intrinsic immune evasion mechanisms and pleiotropy are a barrier to cancer immunotherapy. This is apparent in certain highly fatal cancers, including high-grade gliomas and glioblastomas (GBM). In this study, we evaluated two murine syngeneic glioma models (GL261 and CT2A) as preclinical models for human GBM using functional genetic screens, single-cell transcriptomics and machine learning approaches.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Natural Sciences, Black Hills State University, Spearfish, South Dakota, United States of America.
Mesenchymal-like cancer cells are an indicator of malignant tumors as they exhibit tumorigenic properties including downregulation of differentiation markers, and increased colony-forming potential, motility, and chemoresistance. We have previously demonstrated that the cyanobacterial biotoxin beta-methylamino-L-alanine (BMAA) is capable of influencing neural cell differentiation state through mechanisms involving the Wnt signaling pathway, suggesting the possibility that BMAA may play a role in influencing other Wnt related differentiation processes including mesenchymal transition. In this study we present evidence characterizing the effects of BMAA on mesenchymal transition in a human neuroblastoma cell line and provide support for the hypothesis that the biotoxin can promote this process in these cells by altering differentiation state, inducing changes in gene expression, and changing cellular function in manners consistent with cellular mesenchymal transition.
View Article and Find Full Text PDFCancer Discov
November 2024
Duke University, Durham, NC, United States.
Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. Here, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ~800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!