The construction of weirs in Korea's Four Major Rivers Project has led to an increase in cyanobacterial blooms, posing environmental challenges. To address this, the government began opening weirs in 2017. However, interpreting experimental results has proven to be complex due to the multifaceted nature of blooms. This study aimed to assess the impact of opening the Juksan Weir on cyanobacterial blooms and water quality in the Yeongsan River. Using a median difference test (MDT) and causal impact analysis (CIA) with Bayesian structural time-series (BSTS) models, changes in cyanobacterial cell density (Cyano) and chlorophyll a concentration (Chl-a) before (January 2013 to June 2017) and after (July 2017 to December 2021) the weir-opening event were analyzed. The MDT revealed no significant change in Cyano post-weir opening (p = 0.267), but Chl-a significantly increased by 48.1 % (p < 0.01). As a result of CIA, Cyano decreased, albeit statistically insignificantly (p = 0.454), while Chl-a increased by 59.0 % (p < 0.01). These findings contradict the expectation that Cyano decrease due to the increased flow velocity resulting from weir opening. The absence of changes in Cyano and the increase in Chl-a can be attributed to several factors, including the constrained and inadequate duration of full weir opening combined with conducive conditions for the proliferation of other algae such as diatoms and green algae. These findings suggest that the effectiveness of weir opening in controlling Cyano may have been compromised by factors influencing the overall aquatic ecosystem dynamics. Further analysis revealed that factors such as elevated water temperatures (≥ 30 °C) and reduced flow rates (< 37 m/s) contributed to the flourishing of cyanobacteria, whose concentrations exceeded 10,000 cells/mL. In analyzing causal relationships in environmental management, especially when there are complex causal interactions, the application of MDT and CIA provides valuable insights.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171646 | DOI Listing |
Heliyon
January 2025
Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
Cyanobacterial blooms represent a significant environmental issue posing widespread threats to global aquatic ecological health. Climate and nutrient enrichment were the most studied factors modulating cyanobacterial blooms in eutrophic lakes. However, in many floodplain lakes, the importance of hydrological variation in driving and predicting cyanobacterial blooms is often overlooked and largely underestimated, which has hampered the effectiveness of lake management.
View Article and Find Full Text PDFChemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
The global phenomenon of cyanobacterial bloom pollution is spreading globally due to climate change and eutrophication. It is well established that harmful cyanobacteria produce a wide range of toxins including microcystin-LR (MC-LR), a cyclic heptapeptide toxin known to damage various organs. The intestinal tract is the main site of MC-LR absorption and one of the targets susceptible to toxicity.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Informatics and Information Science, University of Konstanz, Germany; Faculty of Information Technology, Monash University, Australia. Electronic address:
Microcystins (MCs) occur frequently during cyanobacterial blooms worldwide, representing a group of currently about 300 known MC congeners, which are structurally highly similar. Human exposure to MCs via contaminated water, food or dietary supplements can lead to severe intoxications with ensuing high morbidity and in some cases mortality. Currently, one MC congener (MC-LR) is almost exclusively considered for risk assessment (RA) by the WHO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!