Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To extract any adaptive benefit, the circadian clock needs to be synchronized to the 24-h day-night cycles. We have investigated if it is a general property of the brain's circadian clock to recognize social interactions as external time givers. Sociosexual interactions with the opposite sex are universal, prevalent even in the lives of solitary animals. The solitary adult life of the Spodoptera littoralis moth is singularly dedicated to sex, offering an ideal context for exploring the impact of sociosexual cues on circadian timekeeping. We have identified specific olfactory cues responsible for social entrainment, revealing a surprisingly strong influence of pheromone-mediated remote sociosexual interactions on circadian rhythms. Males' free-running rhythms are induced and synchronized by the sex pheromone that the female releases in a rhythmic fashion, highlighting a hierarchical relation between the female and male circadian oscillators. Even a single pulse of the sex pheromone altered clock gene expression in the male brain, surpassing the effect of light on the clock. Our finding of a daytime-dependent, lasting impact of pheromone on male's courtship efficacy indicates that circadian timing in moths is a trait under sexual selection. We have identified specific components of the sex-pheromone blend that lack mate-attractive property but have powerful circadian effects, providing rationale for their continued retention by the female. We show that such volatiles, when shared across sympatric moth species, can trigger communal synchronization. Our results suggest that the sex pheromone released by female moths entrains males' behavioral activity rhythm to ensure synchronized timing of mating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2024.02.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!