Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.03.021 | DOI Listing |
Expert Opin Drug Discov
January 2025
Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
Introduction: Antisense oligonucleotide (ASO) was established as a viable therapeutic option for genetic disorders. ASOs can target RNAs implicated in various diseases, including upregulated mRNA and pre-mRNA undergoing abnormal alternative splicing events. Therapeutic applications of ASOs have been proven with the Food and Drug Administration approval of several drugs in recent years.
View Article and Find Full Text PDFWorld J Surg
December 2024
Department of Obstetrics and Gynecology, Niigata University Medical and Dental Hospital, Niigata, Japan.
Objective: To compare the outcomes of open appendectomy (OA) and laparoscopic appendectomy (LA) for acute appendicitis during pregnancy by trimester.
Methods: We conducted a nationwide retrospective cohort study using the Diagnosis Procedure Combination database in Japan. We identified pregnant women diagnosed with appendicitis who underwent OA or LA from 2010 to 2022.
J Control Release
December 2024
School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia. Electronic address:
RSC Med Chem
December 2024
University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs).
View Article and Find Full Text PDFPharmaceutics
October 2024
Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan.
Nucleic acid medicines are a highly attractive modality that act in a sequence-specific manner on target molecules. To date, 21 such products have been approved by the Food and Drug Administration. However, the development of nucleic acid medicines continues to face various challenges, including tissue and cell targeting as well as intracellular delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!